Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 9(14)2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32241864

RESUMO

Raised mucoid skin lesions have been observed on smallmouth bass (Micropterus dolomieu) for years. Here, we report the draft genome of a novel adomavirus (Micropterus dolomieu adomavirus 2) associated with this disease. The circular genome is 17,561 bp and most similar to that of alpha-adomaviruses.

2.
Environ Toxicol Chem ; 36(9): 2352-2366, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28224655

RESUMO

To identify potential biomarkers of salt stress in a freshwater sentinel species, we examined transcriptional responses of the common mussel Elliptio complanata to controlled sodium chloride (NaCl) exposures. Ribonucleic acid sequencing (RNA-Seq) of mantle tissue identified 481 transcripts differentially expressed in adult mussels exposed to 2 ppt NaCl (1.2 ppt chloride) for 7 d, of which 290 had nonoverlapping intervals. Differentially expressed gene categories included ion and transmembrane transport, oxidoreductase activity, maintenance of protein folding, and amino acid metabolism. The rate-limiting enzyme for synthesis of taurine, an amino acid frequently linked to osmotic stress in aquatic species, was upregulated, as was the transmembrane ion pump sodium/potassium adenosine 5'-triphosphatase. These patterns confirm a primary transcriptional response to the experimental dose, albeit likely overlapping with nonspecific secondary stress responses. Substantial involvement of the heat shock protein 70 chaperone family and the water-transporting aquaporin family was not detected, however, in contrast to some studies in other bivalves. A subset of the most significantly regulated genes was confirmed by quantitative polymerase chain reaction in an independent sample. Cluster analysis showed separation of mussels exposed to 2 ppt NaCl from control mussels in multivariate space, but mussels exposed to 1 ppt NaCl were largely indistinguishable from controls. Transcriptome-scale analysis of salt exposure under laboratory conditions efficiently identified candidate biomarkers for further functional analysis and field validation. Environ Toxicol Chem 2017;36:2352-2366. © Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Cloreto de Sódio/toxicidade , Unionidae/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Exposição Ambiental , Água Doce/química , Pressão Osmótica , Salinidade , Análise de Sequência de RNA , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Estresse Fisiológico , Taurina/metabolismo , Transcrição Gênica , Transcriptoma , Unionidae/genética , Unionidae/metabolismo
3.
mBio ; 7(2): e02164-15, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27118586

RESUMO

As pollinators, bees are cornerstones for terrestrial ecosystem stability and key components in agricultural productivity. All animals, including bees, are associated with a diverse community of microbes, commonly referred to as the microbiome. The bee microbiome is likely to be a crucial factor affecting host health. However, with the exception of a few pathogens, the impacts of most members of the bee microbiome on host health are poorly understood. Further, the evolutionary and ecological forces that shape and change the microbiome are unclear. Here, we discuss recent progress in our understanding of the bee microbiome, and we present challenges associated with its investigation. We conclude that global coordination of research efforts is needed to fully understand the complex and highly dynamic nature of the interplay between the bee microbiome, its host, and the environment. High-throughput sequencing technologies are ideal for exploring complex biological systems, including host-microbe interactions. To maximize their value and to improve assessment of the factors affecting bee health, sequence data should be archived, curated, and analyzed in ways that promote the synthesis of different studies. To this end, the BeeBiome consortium aims to develop an online database which would provide reference sequences, archive metadata, and host analytical resources. The goal would be to support applied and fundamental research on bees and their associated microbes and to provide a collaborative framework for sharing primary data from different research programs, thus furthering our understanding of the bee microbiome and its impact on pollinator health.


Assuntos
Bactérias/genética , Abelhas/microbiologia , Abelhas/fisiologia , Evolução Biológica , Microbiota , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Abelhas/genética , Polinização , Simbiose
4.
PLoS One ; 10(12): e0145365, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26700168

RESUMO

Identifying plant taxa that honey bees (Apis mellifera) forage upon is of great apicultural interest, but traditional methods are labor intensive and may lack resolution. Here we evaluate a high-throughput genetic barcoding approach to characterize trap-collected pollen from multiple North Dakota apiaries across multiple years. We used the Illumina MiSeq platform to generate sequence scaffolds from non-overlapping 300-bp paired-end sequencing reads of the ribosomal internal transcribed spacers (ITS). Full-length sequence scaffolds represented ~530 bp of ITS sequence after adapter trimming, drawn from the 5' of ITS1 and the 3' of ITS2, while skipping the uninformative 5.8S region. Operational taxonomic units (OTUs) were picked from scaffolds clustered at 97% identity, searched by BLAST against the nt database, and given taxonomic assignments using the paired-read lowest common ancestor approach. Taxonomic assignments and quantitative patterns were consistent with known plant distributions, phenology, and observational reports of pollen foraging, but revealed an unexpected contribution from non-crop graminoids and wetland plants. The mean number of plant species assignments per sample was 23.0 (+/- 5.5) and the mean species diversity (effective number of equally abundant species) was 3.3 (+/- 1.2). Bray-Curtis similarities showed good agreement among samples from the same apiary and sampling date. Rarefaction plots indicated that fewer than 50,000 reads are typically needed to characterize pollen samples of this complexity. Our results show that a pre-compiled, curated reference database is not essential for genus-level assignments, but species-level assignments are hindered by database gaps, reference length variation, and probable errors in the taxonomic assignment, requiring post-hoc evaluation. Although the effective per-sample yield achieved using custom MiSeq amplicon primers was less than the machine maximum, primarily due to lower "read2" quality, further protocol optimization and/or a modest reduction in multiplex scale should offset this difficulty. As small quantities of pollen are sufficient for amplification, our approach might be extendable to other questions or species for which large pollen samples are not available.


Assuntos
Abelhas/fisiologia , Filogenia , Plantas/classificação , Pólen/classificação , Animais , DNA de Plantas/química , Geografia , Pólen/genética , Polinização , Análise de Sequência de DNA
5.
Viruses ; 7(7): 3586-602, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26154017

RESUMO

Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV).


Assuntos
Abelhas/virologia , Genoma Viral , Varroidae/virologia , Vírus/genética , Vírus/isolamento & purificação , Animais , Feminino , Tamanho do Genoma , Masculino , Dados de Sequência Molecular , Filogenia , Vírus/classificação
7.
mBio ; 5(1): e00898-13, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24449751

RESUMO

UNLABELLED: Emerging and reemerging diseases that result from pathogen host shifts are a threat to the health of humans and their domesticates. RNA viruses have extremely high mutation rates and thus represent a significant source of these infectious diseases. In the present study, we showed that a plant-pathogenic RNA virus, tobacco ringspot virus (TRSV), could replicate and produce virions in honeybees, Apis mellifera, resulting in infections that were found throughout the entire body. Additionally, we showed that TRSV-infected individuals were continually present in some monitored colonies. While intracellular life cycle, species-level genetic variation, and pathogenesis of the virus in honeybee hosts remain to be determined, the increasing prevalence of TRSV in conjunction with other bee viruses from spring toward winter in infected colonies was associated with gradual decline of host populations and winter colony collapse, suggesting the negative impact of the virus on colony survival. Furthermore, we showed that TRSV was also found in ectoparasitic Varroa mites that feed on bee hemolymph, but in those instances the virus was restricted to the gastric cecum of Varroa mites, suggesting that Varroa mites may facilitate the spread of TRSV in bees but do not experience systemic invasion. Finally, our phylogenetic analysis revealed that TRSV isolates from bees, bee pollen, and Varroa mites clustered together, forming a monophyletic clade. The tree topology indicated that the TRSVs from arthropod hosts shared a common ancestor with those from plant hosts and subsequently evolved as a distinct lineage after transkingdom host alteration. This study represents a unique example of viruses with host ranges spanning both the plant and animal kingdoms. IMPORTANCE: Pathogen host shifts represent a major source of new infectious diseases. Here we provide evidence that a pollen-borne plant virus, tobacco ringspot virus (TRSV), also replicates in honeybees and that the virus systemically invades and replicates in different body parts. In addition, the virus was detected inside the body of parasitic Varroa mites, which consume bee hemolymph, suggesting that Varroa mites may play a role in facilitating the spread of the virus in bee colonies. This study represents the first evidence that honeybees exposed to virus-contaminated pollen could also be infected and raises awareness of potential risks of new viral disease emergence due to host shift events. About 5% of known plant viruses are pollen transmitted, and these are potential sources of future host-jumping viruses. The findings from this study showcase the need for increased surveillance for potential host-jumping events as an integrated part of insect pollinator management programs.


Assuntos
Abelhas/virologia , Nepovirus/crescimento & desenvolvimento , Replicação Viral , Estruturas Animais/virologia , Animais , Análise por Conglomerados , Genótipo , Dados de Sequência Molecular , Nepovirus/isolamento & purificação , Nepovirus/fisiologia , Filogenia , Pólen/virologia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Varroidae/virologia
8.
PLoS One ; 7(8): e43562, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22927991

RESUMO

Recent losses in honey bee colonies are unusual in their severity, geographical distribution, and, in some cases, failure to present recognized characteristics of known disease. Domesticated honey bees face numerous pests and pathogens, tempting hypotheses that colony collapses arise from exposure to new or resurgent pathogens. Here we explore the incidence and abundance of currently known honey bee pathogens in colonies suffering from Colony Collapse Disorder (CCD), otherwise weak colonies, and strong colonies from across the United States. Although pathogen identities differed between the eastern and western United States, there was a greater incidence and abundance of pathogens in CCD colonies. Pathogen loads were highly covariant in CCD but not control hives, suggesting that CCD colonies rapidly become susceptible to a diverse set of pathogens, or that co-infections can act synergistically to produce the rapid depletion of workers that characterizes the disorder. We also tested workers from a CCD-free apiary to confirm that significant positive correlations among pathogen loads can develop at the level of individual bees and not merely as a secondary effect of CCD. This observation and other recent data highlight pathogen interactions as important components of bee disease. Finally, we used deep RNA sequencing to further characterize microbial diversity in CCD and non-CCD hives. We identified novel strains of the recently described Lake Sinai viruses (LSV) and found evidence of a shift in gut bacterial composition that may be a biomarker of CCD. The results are discussed with respect to host-parasite interactions and other environmental stressors of honey bees.


Assuntos
Abelhas/microbiologia , Abelhas/virologia , Colapso da Colônia/microbiologia , Colapso da Colônia/virologia , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Penicillium/enzimologia , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética
9.
BMC Genomics ; 13: 285, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22747707

RESUMO

BACKGROUND: We present a comprehensive transcriptome analysis of the fungus Ascosphaera apis, an economically important pathogen of the Western honey bee (Apis mellifera) that causes chalkbrood disease. Our goals were to further annotate the A. apis reference genome and to identify genes that are candidates for being differentially expressed during host infection versus axenic culture. RESULTS: We compared A. apis transcriptome sequence from mycelia grown on liquid or solid media with that dissected from host-infected tissue. 454 pyrosequencing provided 252 Mb of filtered sequence reads from both culture types that were assembled into 10,087 contigs. Transcript contigs, protein sequences from multiple fungal species, and ab initio gene predictions were included as evidence sources in the Maker gene prediction pipeline, resulting in 6,992 consensus gene models. A phylogeny based on 12 of these protein-coding loci further supported the taxonomic placement of Ascosphaera as sister to the core Onygenales. Several common protein domains were less abundant in A. apis compared with related ascomycete genomes, particularly cytochrome p450 and protein kinase domains. A novel gene family was identified that has expanded in some ascomycete lineages, but not others. We manually annotated genes with homologs in other fungal genomes that have known relevance to fungal virulence and life history. Functional categories of interest included genes involved in mating-type specification, intracellular signal transduction, and stress response. Computational and manual annotations have been made publicly available on the Bee Pests and Pathogens website. CONCLUSIONS: This comprehensive transcriptome analysis substantially enhances our understanding of the A. apis genome and its expression during infection of honey bee larvae. It also provides resources for future molecular studies of chalkbrood disease and ultimately improved disease management.


Assuntos
Abelhas/microbiologia , Perfilação da Expressão Gênica/métodos , Interações Hospedeiro-Patógeno/genética , Onygenales/genética , Alelos , Animais , Sequência Conservada/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento/genética , Estudos de Associação Genética , Loci Gênicos/genética , Anotação de Sequência Molecular , Família Multigênica/genética , Onygenales/patogenicidade , Filogenia , Estrutura Terciária de Proteína , Transdução de Sinais/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
BMC Genomics ; 12: 450, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21923906

RESUMO

BACKGROUND: As scientists continue to pursue various 'omics-based research, there is a need for high quality data for the most fundamental 'omics of all: genomics. The bacterium Paenibacillus larvae is the causative agent of the honey bee disease American foulbrood. If untreated, it can lead to the demise of an entire hive; the highly social nature of bees also leads to easy disease spread, between both individuals and colonies. Biologists have studied this organism since the early 1900s, and a century later, the molecular mechanism of infection remains elusive. Transcriptomics and proteomics, because of their ability to analyze multiple genes and proteins in a high-throughput manner, may be very helpful to its study. However, the power of these methodologies is severely limited without a complete genome; we undertake to address that deficiency here. RESULTS: We used the Illumina GAIIx platform and conventional Sanger sequencing to generate a 182-fold sequence coverage of the P. larvae genome, and assembled the data using ABySS into a total of 388 contigs spanning 4.5 Mbp. Comparative genomics analysis against fully-sequenced soil bacteria P. JDR2 and P. vortex showed that regions of poor conservation may contain putative virulence factors. We used GLIMMER to predict 3568 gene models, and named them based on homology revealed by BLAST searches; proteases, hemolytic factors, toxins, and antibiotic resistance enzymes were identified in this way. Finally, mass spectrometry was used to provide experimental evidence that at least 35% of the genes are expressed at the protein level. CONCLUSIONS: This update on the genome of P. larvae and annotation represents an immense advancement from what we had previously known about this species. We provide here a reliable resource that can be used to elucidate the mechanism of infection, and by extension, more effective methods to control and cure this widespread honey bee disease.


Assuntos
Abelhas/microbiologia , Genoma Bacteriano , Paenibacillus/genética , Animais , Hibridização Genômica Comparativa , Biologia Computacional , DNA Bacteriano/genética , Anotação de Sequência Molecular , Proteômica , Análise de Sequência de DNA
11.
PLoS One ; 5(9)2010 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-20824096

RESUMO

BACKGROUND: Arthropod cuticle is composed predominantly of a self-assembling matrix of chitin and protein. Genes encoding structural cuticular proteins are remarkably abundant in arthropod genomes, yet there has been no systematic survey of conserved motifs across cuticular protein families. METHODOLOGY/PRINCIPAL FINDINGS: Two short sequence motifs with conserved tyrosines were identified in Drosophila cuticular proteins that were similar to the GYR and YLP Interpro domains. These motifs were found in members of the CPR, Tweedle, CPF/CPFL, and (in Anopheles gambiae) CPLCG cuticular protein families, and the Dusky/Miniature family of cuticle-associated proteins. Tweedle proteins have a characteristic motif architecture that is shared with the Drosophila protein GCR1 and its orthologs in other species, suggesting that GCR1 is also cuticular. A resilin repeat, which has been shown to confer elasticity, matched one of the motifs; a number of other Drosophila proteins of unknown function exhibit a motif architecture similar to that of resilin. The motifs were also present in some proteins of the peritrophic matrix and the eggshell, suggesting molecular convergence among distinct extracellular matrices. More surprisingly, gene regulation, development, and proteolysis were statistically over-represented ontology terms for all non-cuticular matches in Drosophila. Searches against other arthropod genomes indicate that the motifs are taxonomically widespread. CONCLUSIONS: This survey suggests a more general definition for GYR and YLP motifs and reveals their contribution to several types of extracellular matrix. They may define sites of protein interaction with DNA or other proteins, based on ontology analysis. These results can help guide experimental studies on the biochemistry of cuticle assembly.


Assuntos
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Drosophila/química , Drosophila/classificação , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Insetos/genética , Insetos/química , Insetos/classificação , Insetos/genética , Insetos/metabolismo , Dados de Sequência Molecular , Filogenia , Ligação Proteica , Alinhamento de Sequência
12.
PLoS One ; 4(12): e8345, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20019874

RESUMO

Several multigene families have been described that together encode scores of structural cuticular proteins in Drosophila, although the functional significance of this diversity remains to be explored. Here I investigate the evolutionary histories of several multigene families (CPR, Tweedle, CPLCG, and CPF/CPFL) that vary in age, size, and sequence complexity, using sequenced Drosophila genomes and mosquito outgroups. My objective is to describe the rates and mechanisms of 'cuticle-ome' divergence, in order to identify conserved and rapidly evolving elements. I also investigate potential examples of interlocus gene conversion and concerted evolution within these families during Drosophila evolution. The absolute rate of change in gene number (per million years) is an order of magnitude lower for cuticular protein families within Drosophila than it is among Drosophila and the two mosquito taxa, implying that major transitions in the cuticle proteome have occurred at higher taxonomic levels. Several hotspots of intergenic conversion and/or gene turnover were identified, e.g. some gene pairs have independently undergone intergenic conversion within different lineages. Some gene conversion hotspots were characterized by conversion tracts initiating near nucleotide repeats within coding regions, and similar repeats were found within concertedly evolving cuticular protein genes in Anopheles gambiae. Rates of amino-acid substitution were generally severalfold higher along the branch connecting the Sophophora and Drosophila species groups, and 13 genes have Ka/Ks significantly greater than one along this branch, indicating adaptive divergence. Insect cuticular proteins appear to be a source of adaptive evolution within genera and, at higher taxonomic levels, subject to periods of gene-family expansion and contraction followed by quiescence. However, this relative stasis is belied by hotspots of molecular evolution, particularly concerted evolution, during the diversification of Drosophila. The prominent association between interlocus gene conversion and repeats within the coding sequence of interacting genes suggests that the latter promote strand exchange.


Assuntos
Drosophila/genética , Evolução Molecular , Genes de Insetos/genética , Proteínas de Insetos/genética , Alelos , Substituição de Aminoácidos/genética , Animais , Anopheles/genética , Sequência de Bases , Conversão Gênica/genética , Dados de Sequência Molecular , Família Multigênica/genética , Fases de Leitura Aberta/genética , Filogenia , Polimorfismo Genético , Seleção Genética , Alinhamento de Sequência
13.
PLoS Pathog ; 5(6): e1000466, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19503607

RESUMO

Recent steep declines in honey bee health have severely impacted the beekeeping industry, presenting new risks for agricultural commodities that depend on insect pollination. Honey bee declines could reflect increased pressures from parasites and pathogens. The incidence of the microsporidian pathogen Nosema ceranae has increased significantly in the past decade. Here we present a draft assembly (7.86 MB) of the N. ceranae genome derived from pyrosequence data, including initial gene models and genomic comparisons with other members of this highly derived fungal lineage. N. ceranae has a strongly AT-biased genome (74% A+T) and a diversity of repetitive elements, complicating the assembly. Of 2,614 predicted protein-coding sequences, we conservatively estimate that 1,366 have homologs in the microsporidian Encephalitozoon cuniculi, the most closely related published genome sequence. We identify genes conserved among microsporidia that lack clear homology outside this group, which are of special interest as potential virulence factors in this group of obligate parasites. A substantial fraction of the diminutive N. ceranae proteome consists of novel and transposable-element proteins. For a majority of well-supported gene models, a conserved sense-strand motif can be found within 15 bases upstream of the start codon; a previously uncharacterized version of this motif is also present in E. cuniculi. These comparisons provide insight into the architecture, regulation, and evolution of microsporidian genomes, and will drive investigations into honey bee-Nosema interactions.


Assuntos
Abelhas/microbiologia , Genes Fúngicos , Genoma Fúngico , Nosema/genética , Animais , Sequência de Bases , Códon/genética , Códon/metabolismo , Sequência Conservada , Interpretação Estatística de Dados , Encephalitozoon cuniculi/genética , Modelos Genéticos , Dados de Sequência Molecular , Nosema/patogenicidade , Elementos Reguladores de Transcrição/genética , Sequências Repetitivas de Ácido Nucleico/genética , Alinhamento de Sequência , Homologia de Sequência do Ácido Nucleico , Esporos Fúngicos/genética
14.
Genetica ; 135(1): 25-38, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18297403

RESUMO

DNA markers based on transposable-element polymorphisms are potentially useful alternatives to anonymous fragment-length polymorphisms (AFLPs). We developed the retrotransposon sequence-specific amplified polymorphism (retrotransposon SSAP) technique for the angiosperm Iris missouriensis (Iridaceae) in order to evaluate its use in generating population-genetic markers. Our cloning strategy identified two groups of long-terminal repeat retrotransposons of the IRRE family. Primers homologous to conserved regions of these elements generated repeatable and polymorphic markers. In comparison, the AFLP protocol failed to produce useful markers in our hands in this species. To investigate the distribution and evolutionary tempo of the two retrotransposons, we developed a phylogeny of representative species of subgenus Limniris based on chloroplast sequence. Sequences of both groups of retrotransposons were widespread in Limniris, but we also found evidence of substantial sequence and copy-number evolution since the divergence of I. missouriensis from other Limniris species. We corroborated these results with quantitative real-time PCR estimates of relative copy number. Importantly, the geographic structure of retrotransposon SSAP was strikingly different for the two groups of retrotransposons, indicating that different mutational dynamics and/or selective pressures govern their distribution. Although these primers should be useful for population-genetic studies of Iris missouriensis and other Limniris species, our findings reinforce the need for caution in evaluating transposable-element markers used to analyze the relatedness of populations or cultivars, as very different conclusions may be reached depending on the sequence amplified.


Assuntos
Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , DNA de Plantas/genética , Gênero Iris/genética , Retroelementos , Sequência de Bases , Sequência Conservada/genética , Primers do DNA , Elementos de DNA Transponíveis , Evolução Molecular , Dosagem de Genes , Frequência do Gene , Marcadores Genéticos , Gênero Iris/classificação , Dados de Sequência Molecular , Filogenia , Polimorfismo Genético , Especificidade da Espécie , Sequências Repetidas Terminais
15.
Insect Biochem Mol Biol ; 38(6): 661-76, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18510978

RESUMO

Annotation of the Anopheles gambiae genome has revealed a large increase in the number of genes encoding cuticular proteins with the Rebers and Riddiford Consensus (the CPR gene family) relative to Drosophila melanogaster. This increase reflects an expansion of the RR-2 group of CPR genes, particularly the amplification of sets of highly similar paralogs. Patterns of nucleotide variation indicate that extensive concerted evolution is occurring within these clusters. The pattern of concerted evolution is complex, however, as sequence similarity within clusters is uncorrelated with gene order and orientation, and no comparable clusters occur within similarly compact arrays of the RR-1 group in mosquitoes or in either group in D. melanogaster. The dearth of pseudogenes suggests that sequence clusters are maintained by selection for high gene-copy number, perhaps due to selection for high expression rates. This hypothesis is consistent with the apparently parallel evolution of compact gene architectures within sequence clusters relative to single-copy genes. We show that RR-2 proteins from sequence-cluster genes have complex repeats and extreme amino-acid compositions relative to single-copy CPR proteins in An. gambiae, and that the amino-acid composition of the N-terminal and C-terminal sequence flanking the chitin-binding consensus region evolves in a correlated fashion.


Assuntos
Anopheles/genética , Evolução Molecular , Amplificação de Genes , Proteínas de Insetos/genética , Sequência de Aminoácidos , Animais , Culex/genética , Genoma de Inseto , Proteínas de Insetos/química , Dados de Sequência Molecular , Família Multigênica , Filogenia
16.
BMC Genomics ; 9: 22, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18205929

RESUMO

BACKGROUND: The most abundant family of insect cuticular proteins, the CPR family, is recognized by the R&R Consensus, a domain of about 64 amino acids that binds to chitin and is present throughout arthropods. Several species have now been shown to have more than 100 CPR genes, inviting speculation as to the functional importance of this large number and diversity. RESULTS: We have identified 156 genes in Anopheles gambiae that code for putative cuticular proteins in this CPR family, over 1% of the total number of predicted genes in this species. Annotation was verified using several criteria including identification of TATA boxes, INRs, and DPEs plus support from proteomic and gene expression analyses. Two previously recognized CPR classes, RR-1 and RR-2, form separate, well-supported clades with the exception of a small set of genes with long branches whose relationships are poorly resolved. Several of these outliers have clear orthologs in other species. Although both clades are under purifying selection, the RR-1 variant of the R&R Consensus is evolving at twice the rate of the RR-2 variant and is structurally more labile. In contrast, the regions flanking the R&R Consensus have diversified in amino-acid composition to a much greater extent in RR-2 genes compared with RR-1 genes. Many genes are found in compact tandem arrays that may include similar or dissimilar genes but always include just one of the two classes. Tandem arrays of RR-2 genes frequently contain subsets of genes coding for highly similar proteins (sequence clusters). Properties of the proteins indicated that each cluster may serve a distinct function in the cuticle. CONCLUSION: The complete annotation of this large gene family provides insight on the mechanisms of gene family evolution and clues about the need for so many CPR genes. These data also should assist annotation of other Anopheles genes.


Assuntos
Anopheles/genética , Sequência Consenso/genética , Proteínas de Insetos/análise , Proteínas de Insetos/genética , Família Multigênica , Sequência de Aminoácidos , Animais , Bases de Dados Genéticas , Evolução Molecular , Modelos Biológicos , Dados de Sequência Molecular , Filogenia , Regiões Promotoras Genéticas , Sinais de Poliadenilação na Ponta 3' do RNA/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Regiões não Traduzidas/análise
17.
Mol Ecol ; 16(21): 4585-98, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17908219

RESUMO

We investigated the phylogeography of Iris missouriensis (Iridaceae), which is widely distributed in western North America. We utilized transposon display and DNA sequencing to quantify nuclear and chloroplast genetic structure. Our objectives were (i) to characterize the geographic structure of genetic variation throughout the species range, (ii) to test whether both margins of the range show reduced genetic diversity as predicted by north-south expansion and contraction associated with climate change, and (iii) to determine whether the subspecies Iris missouriensis ssp. longipetala is genetically distinct. We found that genetic diversity was significantly lower in the northern part of the range but was not significantly different between the central and southern regions, indicating greater stability of the southern margin vs. the northern. Among-population differentiation was high (PhiPT=0.52). The largest divisions in each marker set were concordant and separated the southern Rocky Mountains and Basin and Range provinces from the remainder of the range. The boundaries of this phylogeographic break do not coincide with gaps in present-day distributions or phylogeographic breaks identified in other species, and may indicate a measure of reproductive isolation. Consistent with current treatments, we did not find support for the taxonomic placement of I. missourienis ssp. longipetala as a distinct species. Although transposon display has been used to investigate relationships among crop accessions and their wild relatives, to our knowledge, this is the first use of these markers for population-level phylogeography of a nonmodel species and further demonstrates their utility in species recalcitrant to amplified fragment length polymorphism protocols.


Assuntos
Geografia , Gênero Iris/classificação , Filogenia , DNA de Cloroplastos/química , DNA de Plantas/química , Marcadores Genéticos , Haplótipos , Gênero Iris/genética , Polimorfismo Genético , Estados Unidos
18.
Evolution ; 58(12): 2669-81, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15696746

RESUMO

Studies of natural hybridization have suggested that it may be a creative stimulus for adaptive evolution and speciation. An important step in this process is the establishment of fit recombinant genotypes that are buffered from subsequent recombination with unlike genotypes. We used molecular markers and a two-generation sampling strategy to infer the extent of recombination in a Louisiana iris hybrid zone consisting predominantly of Iris fulva-type floral phenotypes. Genotypic diversity was fairly high, indicating that sexual reproduction is frequent relative to clonal reproduction. However, we observed strong spatial genetic structure even after controlling for clonality, which implies a low level of pollen and seed dispersal. We therefore used cluster analysis to explore the hypothesis that the fulva-type hybrids are an admixture of groups between which there has been limited recombination. Our results indicate that several such groups are present in the population and are strongly localized spatially. This spatial pattern is not attributable strictly to a lack of mating opportunities between dissimilar genotypes for two reasons: (1) relatedness of flowering pairs was uncorrelated with the degree of overlap in flowering, and (2) paternity analysis shows that pollen movement among the outcross fraction occurred over large distances, with roughly half of all paternity attributed to pollen flow from outside the population. We also found evidence of strong inbreeding depression, indicated by contrasting estimates of the rate of self-fertilization and the average inbreeding coefficient of fulva-type hybrids. We conclude that groups of similar hybrid genotypes can be buffered from recombination at small spatial scales relative to pollen flow, and selection against certain recombinant genotypes may be as important as or more important than clonal reproduction and inbreeding.


Assuntos
Genética Populacional , Hibridização Genética , Iridaceae/genética , Fenótipo , Recombinação Genética/genética , Análise por Conglomerados , Demografia , Eletroforese , Frequência do Gene , Variação Genética , Genótipo , Endogamia , Louisiana , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...