Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 39(9): 1561-1571, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31135926

RESUMO

Tropical dry forests (TDFs) experience a long dry season in which plant species are subject to several months of water deficit. However, TDFs maintain a diverse group of plant life forms, growth forms and leaf phenology, and it is not clear how they vary in their mechanisms for coping with seasonal drought. We studied seasonal changes in leaf water potential (Ψleaf), gas exchange, photochemical activity and functional traits in evergreen and drought-deciduous species from a TDF to determine if leaf phenology mediates plant responses to drought. We found seasonal decreases in Ψleaf, stomatal conductance (gs) and transpiration rate (E), and increases in both intrinsic and instantaneous water-use efficiency. We did not find seasonal differences in photosynthetic rate (Aarea) and carbon isotope composition (δ13C); however, these traits differed between leaf phenology groups, with drought-deciduous plants having higher Aarea and δ13C than evergreen plants. We also found that plants with high leaf nitrogen concentration (Narea) also had low mass-based photosynthetic rate (Amass), photosynthetic-nitrogen-use efficiency and specific leaf area, contrary to the expected relationships given by the leaf economics spectrum. Despite higher Narea, sclerophyllous leaves maintained lower Amass, and this increased structural toughness of leaves may be imposing a stronger limitation for CO2 diffusion and hence photosynthesis. Overall, we found more water-conservative traits in deciduous than in evergreen plants, contrary to what is known about these two leaf phenology groups in other seasonal sites both at tropical and temperate latitudes.


Assuntos
Árvores , Clima Tropical , Secas , Florestas , Fotossíntese , Folhas de Planta , Estações do Ano
2.
Ann Bot ; 107(3): 397-405, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21149276

RESUMO

BACKGROUND AND AIMS: Calotropis procera and Calotropis gigantea, originally from warm parts of Africa and Asia, are now pan-tropical and in ecological terms considered an indicator of overgrazed, disturbed lands; they grow successfully in dry areas. Variations in water relations, morphology and photosynthesis of the two species growing in the same habitat were studied to assess possible mechanisms of tolerance to drought and how these relate to their ecophysiological success. Also the hypothesis that their photosynthetic rate (A) under drought would be affected by stomatal and non-stomatal limitations was tested. METHODS: Water relations, gas exchange, water use efficiency (WUE), fluorescence parameters, pubescence and specific leaf area (SLA) of Calotropis procera and C. gigantea plants growing in the field were evaluated during the wet (WS) and dry (DS) seasons. RESULTS: The xylem water potential (ψ) was similar in both species during the WS and DS; drought caused a 28 % decrease of ψ. In C. procera, A, stomatal conductance (g(s)) and carboxylation efficiency (CE) were higher in the WS with half the values of those during the DS, this species being more affected by drought than C. gigantea. A high δ(13)C of C. gigantea (-26·2 ‰) in the WS indicated a higher integrated WUE, in agreement with its lower g(s). Leaves of C. gigantea were more pubescent than C. procera. Relative stomatal and non-stomatal limitation of A increased with drought in both species; no changes in maximum quantum yield of photosystem II (PSII; F(v)/F(m)) were observed. The decrease in the relative quantum yield of PSII (ϕ(PSII)) and in the photochemical quenching coefficient (q(P)) was more pronounced in C. procera than in C. gigantea. CONCLUSIONS: The photosynthetic capacity of C. procera was higher than that of C. gigantea. During the DS, A was regulated by stomatal and non-stomatal factors in a coordinated manner and drought did not cause chronic photoinhibition. A higher density of trichomes and leaf angle in C. gigantea may contribute to the maintenance of A and confer more efficient protection of photochemical activity in the DS. Ecophysiological traits such as high photosynthetic rate throughout the year even during the DS, and high WUE, highly pubescent leaves and low SLA observed in both species contribute to the establishment and growth of Calotropis in dry conditions.


Assuntos
Calotropis/fisiologia , Fotossíntese , Estômatos de Plantas/fisiologia , Transpiração Vegetal , Calotropis/metabolismo , Calotropis/efeitos da radiação , Secas , Ecossistema , Processos Fotoquímicos , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação , Especificidade da Espécie , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA