Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Front Oncol ; 12: 1032336, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531023

RESUMO

Introduction: Methotrexate (MTX), a folic acid antagonist and nucleotide synthesis inhibitor, is a cornerstone drug used against acute lymphoblastic leukemia (ALL), but its mechanism of action and resistance continues to be unraveled even after decades of clinical use. Methods: To better understand the mechanisms of this drug, we accessed the intracellular metabolic content of 13 ALL cell lines treated with MTX by 1H-NMR, and correlated metabolome data with cell proliferation and gene expression. Further, we validated these findings by inhibiting the cellular antioxidant system of the cells in vitro and in vivo in the presence of MTX. Results: MTX altered the concentration of 31 out of 70 metabolites analyzed, suggesting inhibition of the glycine cleavage system, the pentose phosphate pathway, purine and pyrimidine synthesis, phospholipid metabolism, and bile acid uptake. We found that glutathione (GSH) levels were associated with MTX resistance in both treated and untreated cells, suggesting a new constitutive metabolic-based mechanism of resistance to the drug. Gene expression analyses showed that eight genes involved in GSH metabolism were correlated to GSH concentrations, 2 of which (gamma-glutamyltransferase 1 [GGT1] and thioredoxin reductase 3 [TXNRD3]) were also correlated to MTX resistance. Gene set enrichment analysis (GSEA) confirmed the association between GSH metabolism and MTX resistance. Pharmacological inhibition or stimulation of the main antioxidant systems of the cell, GSH and thioredoxin, confirmed their importance in MTX resistance. Arsenic trioxide (ATO), a thioredoxin inhibitor used against acute promyelocytic leukemia, potentiated MTX cytotoxicity in vitro in some of the ALL cell lines tested. Likewise, the ATO+MTX combination decreased tumor burden and extended the survival of NOD scid gamma (NSG) mice transplanted with patient-derived ALL xenograft, but only in one of four ALLs tested. Conclusion: Altogether, our results show that the cellular antioxidant defense systems contribute to leukemia resistance to MTX, and targeting these pathways, especially the thioredoxin antioxidant system, may be a promising strategy for resensitizing ALL to MTX.

2.
Nat Prod Res ; 36(17): 4520-4524, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34711101

RESUMO

Vaccinium ashei Reade, popularly known as Rabbiteye blueberry, has several therapeutic properties attributed to the phenolic compounds present in its leaves and fruits. Here, we sought to evaluate the effects of the hydroalcoholic extract from V. ashei leaves (Bluegem cultivar, VAB) in T-cell Acute lymphoblastic leukemia (T-ALL). The VAB extract was toxic to T-ALL cells at the ∼60 µg/ml concentration. T-ALL cell death occurred through apoptosis. VAB extract was found to induce micronuclei formation, p53 pathway activation, and cell cycle arrest. Those mutagenic effects were evidenced through microscopy analysis and molecular p53 pathway activation. A series of phenolic compounds were identified in VAB extract by mass spectrometry, such as vanillic acid, catechin, caffeic acid, chlorogenic acid, rutin, coumaric acid, taxifolin, quercetin and naringenin, some of which are presumed to induce DNA damage. In conclusion, the V. ashei leaves extract may have important secondary metabolites with antileukemic properties.


Assuntos
Mirtilos Azuis (Planta) , Hidrocarbonetos/farmacologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Vaccinium , Apoptose , Mirtilos Azuis (Planta)/química , Pontos de Checagem do Ciclo Celular , Humanos , Hidrocarbonetos/química , Fenóis/análise , Extratos Vegetais/química , Folhas de Planta/química , Linfócitos T , Proteína Supressora de Tumor p53 , Vaccinium/química
3.
Nat Commun ; 12(1): 7268, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34907175

RESUMO

Interleukin-7 receptor α (encoded by IL7R) is essential for lymphoid development. Whether acute lymphoblastic leukemia (ALL)-related IL7R gain-of-function mutations can trigger leukemogenesis remains unclear. Here, we demonstrate that lymphoid-restricted mutant IL7R, expressed at physiological levels in conditional knock-in mice, establishes a pre-leukemic stage in which B-cell precursors display self-renewal ability, initiating leukemia resembling PAX5 P80R or Ph-like human B-ALL. Full transformation associates with transcriptional upregulation of oncogenes such as Myc or Bcl2, downregulation of tumor suppressors such as Ikzf1 or Arid2, and major IL-7R signaling upregulation (involving JAK/STAT5 and PI3K/mTOR), required for leukemia cell viability. Accordingly, maximal signaling drives full penetrance and early leukemia onset in homozygous IL7R mutant animals. Notably, we identify 2 transcriptional subgroups in mouse and human Ph-like ALL, and show that dactolisib and sphingosine-kinase inhibitors are potential treatment avenues for IL-7R-related cases. Our model, a resource to explore the pathophysiology and therapeutic vulnerabilities of B-ALL, demonstrates that IL7R can initiate this malignancy.


Assuntos
Subunidade alfa de Receptor de Interleucina-7/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Mutação com Ganho de Função , Heterozigoto , Homozigoto , Humanos , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Camundongos , Penetrância , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Células Precursoras de Linfócitos B/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Transdução de Sinais/efeitos dos fármacos
4.
Blood Adv ; 5(18): 3633-3646, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34438446

RESUMO

Insulin and insulin-like growth factors (IGFs) are mitogenic and prosurvival factors to many different cell types, including acute lymphoblastic leukemia (ALL). Circulating IGFs are bound by IGF binding proteins (IGFBPs) that regulate their action. IGFBP7 is an IGFBP-related protein (IGFBP-rP) that in contrast to other IGFBPs/IGFBP-rPs features higher affinity for insulin than IGFs and was shown to bind the IGF1 receptor (IGF1R) as well. The role of IGFBP7 in cancer is controversial: on some tumors, it functions as an oncogene, whereas in others, it functions as a tumor suppressor. In childhood ALL, higher IGFBP7 expression levels were associated with worse prognosis. Here we show that IGFBP7 exerts mitogenic and prosurvival autocrine effects on ALL cells that were dependent on insulin/IGF. IGFBP7 knockdown or antibody-mediated neutralization resulted in significant attenuation of ALL cell viability in vitro and leukemia progression in vivo. IGFBP7 was shown to prolong the surface retention of the IGF1R under insulin/IGF1 stimulation, resulting in sustained IGF1R, insulin receptor substrate 1 (IRS-1), protein kinase B (AKT), and extracellular signal-regulated kinase (ERK) phosphorylation. Conversely, the insulin receptor was readily internalized and dephosphorylated on insulin stimulation, despite IGFBP7 addition. The affinity of homodimeric IGF1R for insulin is reportedly >100 times lower than for IGF1. In the presence of IGFBP7, however, 25 ng/mL insulin resulted in IGF1R activation levels equivalent to that of 5 ng/mL IGF1. In conclusion, IGFBP7 plays an oncogenic role in ALL by promoting the perdurance of IGF1R at the cell surface, prolonging insulin/IGF stimulation. Preclinical data demonstrate that IGFBP7 is a valid target for antibody-based therapeutic interventions in ALL.


Assuntos
Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Leucemia-Linfoma Linfoblástico de Células Precursoras , Proliferação de Células , Sobrevivência Celular , Humanos , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fosforilação , Receptor IGF Tipo 1/genética
5.
Eur J Med Chem ; 181: 111570, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31408809

RESUMO

Despite the success achieved in the treatment of acute lymphoblastic leukemia (ALL), the search for new drugs featuring selectivity against leukemia cells and effectiveness to prevent relapsed ALL is still highly desirable. Here, we described the synthesis of several novel 3-substituted and 3,6-disubstituted-2-carboalkoxy indoles followed by the elucidation of their mechanism of action and in vivo anti-leukemia efficacy. The synthesis of 3-substituted-2-carboalkoxy indoles relied on two Heck arylations of methyl acrylate and methyl cinnamates respectively, to generate ß,ß-disubstituted acrylates followed by an efficient Cadogan-Sundberg reaction of these latter intermediates. The method developed led to the synthesis of twenty-one novel functionalized indoles. Of these, indole 20 showed selective cytotoxicity against leukemia cells at the nanomolar scale, and, therefore, it was selected for the investigation of its mechanism of action. Indole 20 was found to target tubulin leading to G2/M cell cycle arrest, DNA damage and apoptosis. Indole 20 decreased ß-tubulin protein in leukemia cells in a time-dependent manner and induced depolymerization of the microtubule network in Hela cells, thus fully characterizing its microtubule destabilizer activity. The connectivity map analysis of HL60 promyelocytic leukemia cells treated with indole 20 revealed a transcriptional profile similar to that of cells treated with prostaglandins, apparently due to the induction of cellular differentiation as addressed by the expression of CD11 and CD14 markers. Finally, indole 20 given intraperitoneally, at 10 mg/kg, 5x/week significantly prolonged the overall survival of NOD/SCID mice transplanted with RS4; 11 B-ALL cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Indóis/química , Indóis/uso terapêutico , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Animais , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Cinamatos/síntese química , Cinamatos/química , Cinamatos/uso terapêutico , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células HL-60 , Células HeLa , Humanos , Indóis/síntese química , Camundongos Endogâmicos NOD , Camundongos SCID
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA