Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insect Biochem Mol Biol ; 114: 103226, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31446033

RESUMO

The huge energy demand posed by insect flight activity is met by an efficient oxidative phosphorylation process that takes place within flight muscle mitochondria. In the major arbovirus vector Aedes aegypti, mitochondrial oxidation of pyruvate, proline and glycerol 3-phosphate (G3P) represent the major energy sources of ATP to sustain flight muscle energy demand. Although adenylates exert critical regulatory effects on several mitochondrial enzyme activities, the potential consequences of altered adenylate levels to G3P oxidation remains to be determined. Here, we report that mitochondrial G3P oxidation is controlled by adenylates through allosteric regulation of cytochrome c oxidase (COX) activity in A. aegypti flight muscle. We observed that ADP significantly activated respiratory rates linked to G3P oxidation, in a protonmotive force-independent manner. Kinetic analyses revealed that ADP activates respiration through a slightly cooperative mechanism. Despite adenylates caused no effects on G3P-cytochrome c oxidoreductase activity, COX activity was allosterically activated by ADP. Conversely, ATP exerted powerful inhibitory effects on respiratory rates linked to G3P oxidation and on COX activity. We also observed that high energy phosphate recycling mechanisms did not contribute to the regulatory effects of adenylates on COX activity or G3P oxidation. We conclude that mitochondrial G3P oxidation in A. aegypti flight muscle is regulated by adenylates through the allosteric modulation of COX activity, underscoring the bioenergetic relevance of this novel mechanism and the potential consequences for mosquito dispersal.


Assuntos
Aedes/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Glicerofosfatos/metabolismo , Mitocôndrias/metabolismo , Miofibrilas/metabolismo , Regulação Alostérica , Animais , Respiração Celular , Feminino , Oxirredução
2.
PLoS One ; 11(7): e0158429, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27380021

RESUMO

Schistosoma mansoni, one of the causative agents of human schistosomiasis, has a unique antioxidant network that is key to parasite survival and a valuable chemotherapeutic target. The ability to detoxify and tolerate reactive oxygen species increases along S. mansoni development in the vertebrate host, suggesting that adult parasites are more exposed to redox challenges than young stages. Indeed, adult parasites are exposed to multiple redox insults generated from blood digestion, activated immune cells, and, potentially, from their own parasitic aerobic metabolism. However, it remains unknown how reactive oxygen species are produced by S. mansoni metabolism, as well as their biological effects on adult worms. Here, we assessed the contribution of nutrients and parasite gender to oxygen utilization pathways, and reactive oxygen species generation in whole unpaired adult S. mansoni worms. We also determined the susceptibilities of both parasite sexes to a pro-oxidant challenge. We observed that glutamine and serum importantly contribute to both respiratory and non-respiratory oxygen utilization in adult worms, but with different proportions among parasite sexes. Analyses of oxygen utilization pathways revealed that respiratory rates were high in male worms, which contrast with high non-respiratory rates in females, regardless nutritional sources. Interestingly, mitochondrial complex I-III activity was higher than complex IV specifically in females. We also observed sexual preferences in substrate utilization to sustain hydrogen peroxide production towards glucose in females, and glutamine in male worms. Despite strikingly high oxidant levels and hydrogen peroxide production rates, female worms were more resistant to a pro-oxidant challenge than male parasites. The data presented here indicate that sexual preferences in nutrient metabolism in adult S. mansoni worms regulate oxygen utilization and reactive oxygen species production, which may differently contribute to redox biology among parasite sexes.


Assuntos
Glucose/metabolismo , Glutamina/metabolismo , Consumo de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Schistosoma mansoni/metabolismo , Análise de Variância , Animais , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Feminino , Proteínas de Helminto/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Masculino , Camundongos , Oxirredução , Esquistossomose mansoni/parasitologia , Fatores Sexuais
3.
PLoS Negl Trop Dis ; 3(7): e477, 2009 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-19597543

RESUMO

BACKGROUND: The parasitic trematode Schistosoma mansoni is one of the major causative agents of human schistosomiasis, which afflicts 200 million people worldwide. Praziquantel remains the main drug used for schistosomiasis treatment, and reliance on the single therapy has been prompting the search for new therapeutic compounds against this disease. Our group has demonstrated that heme crystallization into hemozoin (Hz) within the S. mansoni gut is a major heme detoxification route with lipid droplets involved in this process and acting as a potential chemotherapeutical target. In the present work, we investigated the effects of three antimalarial compounds, quinine (QN), quinidine (QND) and quinacrine (QCR) in a murine schistosomiasis model by using a combination of biochemical, cell biology and molecular biology approaches. METHODOLOGY/PRINCIPAL FINDINGS: Treatment of S. mansoni-infected female Swiss mice with daily intraperitoneal injections of QN, and QND (75 mg/kg/day) from the 11(th) to 17(th) day after infection caused significant decreases in worm burden (39%-61%) and egg production (42%-98%). Hz formation was significantly inhibited (40%-65%) in female worms recovered from QN- and QND-treated mice and correlated with reduction in the female worm burden. We also observed that QN treatment promoted remarkable ultrastructural changes in male and female worms, particularly in the gut epithelium and reduced the granulomatous reaction to parasite eggs trapped in the liver. Microarray gene expression analysis indicated that QN treatment increased the expression of transcripts related to musculature, protein synthesis and repair mechanisms. CONCLUSIONS: The overall significant reduction in several disease burden parameters by the antimalarial quinoline methanols indicates that interference with Hz formation in S. mansoni represents an important mechanism of schistosomicidal action of these compounds and points out the heme crystallization process as a valid chemotherapeutic target to treat schistosomiasis.


Assuntos
Anti-Helmínticos/farmacologia , Hemeproteínas/antagonistas & inibidores , Hemeproteínas/metabolismo , Quinacrina/farmacologia , Quinidina/farmacologia , Quinina/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Animais , Feminino , Trato Gastrointestinal/parasitologia , Perfilação da Expressão Gênica , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/ultraestrutura , Fígado/parasitologia , Masculino , Camundongos , Contagem de Ovos de Parasitas , Schistosoma mansoni/ultraestrutura , Esquistossomose mansoni/tratamento farmacológico
4.
FEBS Lett ; 581(9): 1742-50, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17418143

RESUMO

Hemozoin (Hz) is a heme crystal produced upon hemoglobin digestion as the main mechanism of heme disposal in several hematophagous organisms. Here, we show that, in the helminth Schistosoma mansoni, Hz formation occurs in extracellular lipid droplets (LDs). Transmission electron microscopy of adult worms revealed the presence of numerous electron-lucent round structures similar to LDs in gut lumen, where multicrystalline Hz assemblies were found associated to their surfaces. Female regurgitates promoted Hz formation in vitro in reactions partially inhibited by boiling. Fractionation of regurgitates showed that Hz crystallization activity was essentially concentrated on lower density fractions, which have small amounts of pre-formed Hz crystals, suggesting that hydrophilic-hydrophobic interfaces, and not Hz itself, play a key catalytic role in Hz formation in S. mansoni. Thus, these data demonstrate that LDs present in the gut lumen of S. mansoni support Hz formation possibly by allowing association of heme to the lipid-water interface of these structures.


Assuntos
Hemeproteínas/química , Hemeproteínas/efeitos dos fármacos , Lipídeos/farmacologia , Schistosoma mansoni , Animais , Cristalização , Feminino , Interações Hidrofóbicas e Hidrofílicas , Intestinos/química , Schistosoma mansoni/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...