Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 407: 110158, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703797

RESUMO

BACKGROUND: The serotonergic system modulates brain processes via functionally distinct subpopulations of neurons with heterogeneous properties, including their electrophysiological activity. In extracellular recordings, serotonergic neurons to be investigated for their functional properties are commonly identified on the basis of "typical" features of their activity, i.e. slow regular firing and relatively long duration of action potentials. Thus, due to the lack of equally robust criteria for discriminating serotonergic neurons with "atypical" features from non-serotonergic cells, the physiological relevance of the diversity of serotonergic neuron activities results largely understudied. NEW METHODS: We propose deep learning models capable of discriminating typical and atypical serotonergic neurons from non-serotonergic cells with high accuracy. The research utilized electrophysiological in vitro recordings from serotonergic neurons identified by the expression of fluorescent proteins specific to the serotonergic system and non-serotonergic cells. These recordings formed the basis of the training, validation, and testing data for the deep learning models. The study employed convolutional neural networks (CNNs), known for their efficiency in pattern recognition, to classify neurons based on the specific characteristics of their action potentials. RESULTS: The models were trained on a dataset comprising 27,108 original action potential samples, alongside an extensive set of 12 million synthetic action potential samples, designed to mitigate the risk of overfitting the background noise in the recordings, a potential source of bias. Results show that the models achieved high accuracy and were further validated on "non-homogeneous" data, i.e., data unknown to the model and collected on different days from those used for the training of the model, to confirm their robustness and reliability in real-world experimental conditions. COMPARISON WITH EXISTING METHODS: Conventional methods for identifying serotonergic neurons allow recognition of serotonergic neurons defined as typical. Our model based on the analysis of the sole action potential reliably recognizes over 94% of serotonergic neurons including those with atypical features of spike and activity. CONCLUSION: The model is ready for use in experiments conducted with the here described recording parameters. We release the codes and procedures allowing to adapt the model to different acquisition parameters or for identification of other classes of spontaneously active neurons.

2.
Neuropharmacology ; 223: 109307, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36334766

RESUMO

Chronic treatment with serotonin selective reuptake inhibitors or tryciclic antidepressant drugs in rodents has been shown to increase the expression of GluA1 and/or GluA2 AMPA receptor (AMPAR) subunits in several brain areas, including the hippocampus. These changes in AMPAR composition have been suggested to result in increased glutamatergic neurotransmission and possibly underlie enhanced hippocampal synaptic plasticity through the increased availability of calcium-permeable AMPARs, specifically at CA3/CA1 synapses. However, the possibility that chronic treatment with antidepressants actually results in strengthened glutamatergic neurotransmission in CA1 has poorly been investigated. Here, we studied whether chronic treatment with the multimodal antidepressant drug trazodone mimicked the effect of paroxetine on the expression of AMPAR subunits in male wistar rat hippocampus and whether these drugs produced a parallel facilitation of field excitatory postsynaptic potentials (fEPSP) responses evoked by activation of CA3/CA1 synapses in dorsal hippocampal slices. In addition, we investigated whether the quality of glutamatergic AMPARs involved in basal neurotransmission was changed by altered subunit expression, e.g. leading to appearance of calcium-permeable AMPARs. We found a significant increase in GluA2 subunit expression following treatment with trazodone or paroxetine for twenty-one days, but not after seven-days treatment. In contrast, we did not find any significant changes in fEPSP responses supporting either a facilitation of glutamatergic neurotransmission in basal conditions or the appearance of functional calcium-permeable AMPARs at CA3/CA1 pyramidal neuron synapses. Thus, neurochemically-detected increases in the expression of AMPAR subunits cannot directly be extrapolated in increased number of functioning receptors and/or facilitated basal neurotransmission.


Assuntos
Cálcio , Receptores de AMPA , Ratos , Masculino , Animais , Receptores de AMPA/metabolismo , Cálcio/metabolismo , Sinapses/metabolismo , Transmissão Sináptica , Hipocampo , Ratos Wistar , Antidepressivos/farmacologia , Antidepressivos/metabolismo , Paroxetina/farmacologia , Paroxetina/metabolismo
3.
J Clin Med ; 11(12)2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35743619

RESUMO

Recent years, particularly the COVID-19 pandemic, can be considered a turning point for pharmacovigilance and pharmacoepidemiology in terms of their role in drug safety and drug utilisation monitoring in clinical practice [...].

4.
Molecules ; 27(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35335254

RESUMO

Ligands of the Gi protein-coupled adenosine A3 receptor (A3R) are receiving increasing interest as attractive therapeutic tools for the treatment of a number of pathological conditions of the central and peripheral nervous systems (CNS and PNS, respectively). Their safe pharmacological profiles emerging from clinical trials on different pathologies (e.g., rheumatoid arthritis, psoriasis and fatty liver diseases) confer a realistic translational potential to these compounds, thus encouraging the investigation of highly selective agonists and antagonists of A3R. The present review summarizes information on the effect of latest-generation A3R ligands, not yet available in commerce, obtained by using different in vitro and in vivo models of various PNS- or CNS-related disorders. This review places particular focus on brain ischemia insults and colitis, where the prototypical A3R agonist, Cl-IB-MECA, and antagonist, MRS1523, have been used in research studies as reference compounds to explore the effects of latest-generation ligands on this receptor. The advantages and weaknesses of these compounds in terms of therapeutic potential are discussed.


Assuntos
Agonistas do Receptor A3 de Adenosina , Artrite Reumatoide , Agonistas do Receptor A3 de Adenosina/farmacologia , Agonistas do Receptor A3 de Adenosina/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Humanos , Ligantes , Sistema Nervoso Periférico , Receptores Purinérgicos P1
5.
Int J Mol Sci ; 23(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35055048

RESUMO

Exposure to repeated social stress may cause maladaptive emotional reactions that can be reduced by healthy nutritional supplementation. Histaminergic neurotransmission has a central role in orchestrating specific behavioural responses depending on the homeostatic state of a subject, but it remains to be established if it participates in the protective effects against the insults of chronic stress afforded by a healthy diet. By using C57BL/6J male mice that do not synthesize histamine (Hdc-/-) and their wild type (Hdc+/+) congeners we evaluated if the histaminergic system participates in the protective action of a diet enriched with polyunsaturated fatty acids and vitamin A on the deleterious effect of chronic stress. Behavioural tests across domains relevant to cognition and anxiety were performed. Hippocampal synaptic plasticity, cytokine expression, hippocampal fatty acids, oxylipins and microbiota composition were also assessed. Chronic stress induced social avoidance, poor recognition memory, affected hippocampal long-term potentiation, changed the microbiota profile, brain cytokines, fatty acid and oxylipins composition of both Hdc-/- and Hdc+/+ mice. Dietary enrichment counteracted stress-induced deficits only in Hdc+/+ mice as histamine deficiency prevented almost all the diet-related beneficial effects. Interpretation: Our results reveal a previously unexplored and novel role for brain histamine as a mediator of many favorable effects of the enriched diet. These data present long-reaching perspectives in the field of nutritional neuropsychopharmacology.


Assuntos
Dieta , Disbiose , Microbioma Gastrointestinal , Histamina/metabolismo , Comportamento Social , Estresse Psicológico , Animais , Comportamento Animal , Biomarcadores , Peso Corporal , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/fisiopatologia , Locomoção , Masculino , Metagenoma , Metagenômica , Camundongos , Camundongos Knockout , Modelos Animais
6.
J Neurochem ; 157(4): 1182-1195, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33030215

RESUMO

The Nucleus Basalis of Meynert (NBM) is the main source of cholinergic neurons in the basal forebrain to be crucially involved in cognitive functions and whose degeneration correlates with cognitive decline in major degenerative pathologies as Alzheimer's and Parkinson's diseases. However, knowledge concerning NBM neurons derived from human brain is very limited to date. We recently characterized a primary culture of proliferating neuroblasts isolated from the human fetal NBM (hfNBM) as immature cholinergic neurons expressing the machinery to synthetize and release acetylcholine. Here we studied in detail electrophysiological features and cholinergic effects in this cell culture by patch-clamp recordings. Our data demonstrate that atropine-blocked muscarinic receptor activation by acetylcholine or carbachol enhanced IK and reduced INa currents by stimulating Gi -coupled M2 or phospholipase C-coupled M3 receptors, respectively. Inhibition of acetylcholine esterase activity by neostigmine unveiled a spontaneous acetylcholine release from hfNBM neuroblasts that might account for an autocrine/paracrine signaling during human brain development. Present data provide the first description of cholinergic effects in human NBM neurons and point to a role of acetylcholine as an autocrine/paracrine modulator of voltage-dependent channels. Our research could be of relevance in understanding the mechanisms of cholinergic system development and functions in the human brain, either in health or disease.


Assuntos
Acetilcolina/metabolismo , Potenciais de Ação/fisiologia , Prosencéfalo Basal/metabolismo , Neurônios Colinérgicos/metabolismo , Células-Tronco Neurais/metabolismo , Núcleo Basal de Meynert/metabolismo , Células Cultivadas , Feto , Humanos , Transdução de Sinais/fisiologia
7.
PLoS One ; 14(9): e0222855, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31557210

RESUMO

Trazodone is an antidepressant drug with considerable affinity for 5-HT1A receptors and α1-adrenoceptors for which the drug is competitive agonist and antagonist, respectively. In this study, we used cell-attached or whole-cell patch-clamp recordings to characterize the effects of trazodone at somatodendritic 5-HT1A receptors (5-HT1AARs) and α1-adrenoceptors of serotonergic neurons in rodent dorsal raphe slices. To reveal the effects of trazodone at α1-adrenoceptors, the baseline firing of 5-HT neurons was facilitated by applying the selective α1-adrenoceptor agonist phenylephrine at various concentrations. In the absence of phenylephrine, trazodone (1-10 µM) concentration-dependently silenced neurons through activation of 5-HT1AARs. The effect was fully antagonized by the selective 5-HT1A receptor antagonist Way-100635. With 5-HT1A receptors blocked by Way-100635, trazodone (1-10 µM) concentration-dependently inhibited neuron firing facilitated by 1 µM phenylephrine. Parallel rightward shift of dose-response curves for trazodone recorded in higher phenylephrine concentrations (10-100 µM) indicated competitive antagonism at α1-adrenoceptors. Both effects of trazodone were also observed in slices from Tph2-/- mice that lack synthesis of brain serotonin, showing that the activation of 5-HT1AARs was not mediated by endogenous serotonin. In whole-cell recordings, trazodone activated 5-HT1AAR-coupled G protein-activated inwardly-rectifying (GIRK) channel conductance with weak partial agonist efficacy (~35%) compared to that of the full agonist 5-CT. Collectively our data show that trazodone, at concentrations relevant to its clinical effects, exerts weak partial agonism at 5-HT1AARs and disfacilitation of firing through α1-adrenoceptor antagonism. These two actions converge in inhibiting dorsal raphe serotonergic neuron activity, albeit with varying contribution depending on the intensity of α1-adrenoceptor stimulation.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antidepressivos/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Neurônios Serotoninérgicos/efeitos dos fármacos , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Trazodona/farmacologia , Animais , Núcleo Dorsal da Rafe/citologia , Núcleo Dorsal da Rafe/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Fenilefrina/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Neurônios Serotoninérgicos/metabolismo , Triptofano Hidroxilase/genética
8.
Front Neurosci ; 13: 245, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31068767

RESUMO

Brain serotonin (5-hydroxytryptamine, 5-HT) system dysfunction is implicated in exaggerated fear responses triggering various anxiety-, stress-, and trauma-related disorders. However, the underlying mechanisms are not well understood. Here, we investigated the impact of constitutively inactivated 5-HT synthesis on context-dependent fear learning and extinction using tryptophan hydroxylase 2 (Tph2) knockout mice. Fear conditioning and context-dependent fear memory extinction paradigms were combined with c-Fos imaging and electrophysiological recordings in the dorsal hippocampus (dHip). Tph2 mutant mice, completely devoid of 5-HT synthesis in brain, displayed accelerated fear memory formation and increased locomotor responses to foot shock. Furthermore, recall of context-dependent fear memory was increased. The behavioral responses were associated with increased c-Fos expression in the dHip and resistance to foot shock-induced impairment of hippocampal long-term potentiation (LTP). In conclusion, increased context-dependent fear memory resulting from brain 5-HT deficiency involves dysfunction of the hippocampal circuitry controlling contextual representation of fear-related behavioral responses.

9.
Hippocampus ; 28(3): 217-225, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29266595

RESUMO

The hippocampus is functionally differentiated along its longitudinal axis, with the dorsal and ventral segments preferentially involved in cognitive and emotional processing, respectively. Serotonergic modulation of hippocampal function has been extensively studied, but its relation to the dorsoventral axis has remained largely unknown. To examine the modulation of hippocampal output along the dorsoventral axis by endogenous serotonin (5-HT) we compared the effect of the 5-HT/noradrenaline (NA)-releaser, 3,4-methylenedioxymethamphetamine (MDMA), in transversal slices encompassing the entire rat hippocampus. Co-release of 5-HT and NA by MDMA resulted in a gradient of effects on evoked population spikes in the CA1 area along the dorsoventral axis of the hippocampus. Selective 5-HT release decreased population spike amplitude in slices from dorsal hippocampus, whereas an increase was produced in the ventral hippocampus, indicating differential modulation of CA1 impulse flow along the dorsoventral axis by endogenous 5-HT. Selective NA release increased population spike amplitude with no gradient indicating facilitatory effect of endogenous NA along the entire dorsoventral axis. Blockade of 5-HT1A receptors prevented the inhibitory component of MDMA action and the emergence of the gradient, indicating that activation of 5-HT1A receptors is required for differential modulation of CA1 impulse flow by endogenous 5-HT. These findings suggest that a dorsoventral shift in CA1 output level may represent an integral component of 5-HT action on hippocampal information processing. Given the preferential role of ventral hippocampus in emotional and anxiety-related behavior, it can be proposed that serotonin tone encodes the emotional salience of the signal processed by hippocampus.


Assuntos
Hipocampo/metabolismo , Serotonina/metabolismo , Inibidores da Captação Adrenérgica/farmacologia , Animais , Hipocampo/efeitos dos fármacos , Masculino , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Norepinefrina/metabolismo , Piperazinas/farmacologia , Piridinas/farmacologia , Ratos Wistar , Receptor 5-HT1A de Serotonina/metabolismo , Serotoninérgicos/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Técnicas de Cultura de Tecidos
10.
Eur Neuropsychopharmacol ; 27(12): 1258-1267, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29126768

RESUMO

Firing activity of serotonergic neurons is under regulatory control by somatodendritic 5-HT1A autoreceptors (5-HT1AARs). Enhanced 5-HT1AAR functioning may cause decreased serotonergic signaling in brain and has thereby been implicated in the etiology of mood and anxiety disorders. Tryptophan hydroxylase-2 knockout (Tph2-/-) mice exhibit sensitization of 5-HT1A agonist-induced inhibition of serotonergic neuron firing and thus represents a unique animal model of enhanced 5-HT1AAR functioning. To elucidate the mechanisms underlying 5-HT1AAR supersensitivity in Tph2-/- mice, we characterized the activation of G protein-coupled inwardly-rectifying potassium (GIRK) conductance by the 5-HT1A receptor agonist 5-carboxamidotryptamine using whole-cell recordings from serotonergic neurons in dorsal raphe nucleus. Tph2-/- mice exhibited a mean twofold leftward shift of the agonist concentration-response curve (p < 0.001) whereas the maximal response, proportional to the 5-HT1AAR number, was not different (p = 0.42) compared to Tph2+/- and Tph2+/+ littermates. No differences were found in the basal inwardly-rectifying potassium conductance, determined in the absence of agonist, (p = 0.80) nor in total GIRK conductance activated by intracellular application of GTP-γ-S (p = 0.69). These findings indicate increased functional coupling of 5-HT1AARs to GIRK channels in Tph2-/- mice without a concomitant increase in 5-HT1AARs and/or GIRK channel density. In addition, no changes were found in α1-adrenergic facilitation of firing (p = 0.72) indicating lack of adaptive changes Tph2-/- mice. 5-HT1AAR supersensitivity may represents a previously unrecognized cause of serotonergic system hypofunction and associated disorders and provides a possible explanation for conflicting results on the correlation between 5-HT1AAR density and depression in clinical imaging studies.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Regulação da Expressão Gênica/genética , Receptor 5-HT1A de Serotonina/metabolismo , Neurônios Serotoninérgicos/fisiologia , Triptofano Hidroxilase/deficiência , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Animais Recém-Nascidos , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/genética , Núcleo Dorsal da Rafe/citologia , Relação Dose-Resposta a Droga , Estimulação Elétrica , Feminino , Antagonistas GABAérgicos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Ácidos Fosfínicos/farmacologia , Propanolaminas/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Serotonina/análogos & derivados , Serotonina/farmacologia , Serotoninérgicos/farmacologia , Fatores de Tempo , Triptofano Hidroxilase/genética
11.
PeerJ ; 5: e3086, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28413720

RESUMO

Alzheimer's disease is a multifactorial disorder caused by the interaction of genetic, epigenetic and environmental factors. The formation of cytotoxic oligomers consisting of Aß peptide is widely accepted as being one of the main key events triggering the development of Alzheimer's disease. Aß peptide production results from the specific proteolytic processing of the amyloid precursor protein (APP). Deciphering the factors governing the activity of the secretases responsible for the cleavage of APP is still a critical issue. Kits available commercially measure the enzymatic activity of the secretases from cells lysates, in vitro. By contrast, we have developed a prototypal rapid bioassay that provides visible information on the proteolytic processing of APP directly in living cells. APP was fused to a monomeric variant of the green fluorescent protein and a monomeric variant of the red fluorescent protein at the C-terminal and N-terminal (mChAPPmGFP), respectively. Changes in the proteolytic processing rate in transfected human neuroblastoma and rat neuronal cells were imaged with confocal microscopy as changes in the red/green fluorescence intensity ratio. The significant decrease in the mean red/green ratio observed in cells over-expressing the ß-secretase BACE1, or the α-secretase ADAM10, fused to a monomeric blue fluorescent protein confirms that the proteolytic site is still accessible. Specific siRNA was used to evaluate the contribution of endogenous BACE1. Interestingly, we found that the degree of proteolytic processing of APP is not completely homogeneous within the same single cell, and that there is a high degree of variability between cells of the same type. We were also able to follow with a fluorescence spectrometer the changes in the red emission intensity of the extracellular medium when BACE1 was overexpressed. This represents a complementary approach to fluorescence microscopy for rapidly detecting changes in the proteolytic processing of APP in real time. In order to allow the discrimination between the α- and the ß-secretase activity, we have created a variant of mChAPPmGFP with a mutation that inhibits the α-secretase cleavage without perturbing the ß-secretase processing. Moreover, we obtained a quantitatively robust estimate of the changes in the red/green ratio for the above conditions by using a flow cytometer able to simultaneously excite and measure the red and green fluorescence. Our novel approach lay the foundation for a bioassay suitable to study the effect of drugs or particular conditions, to investigate in an unbiased way the the proteolytic processing of APP in single living cells in order, and to elucidate the causes of the variability and the factors driving the processing of APP.

12.
Front Cell Neurosci ; 10: 195, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27536220

RESUMO

Tonic spiking of serotonergic neurons establishes serotonin levels in the brain. Since the first observations, slow regular spiking has been considered as a defining feature of serotonergic neurons. Recent studies, however, have revealed the heterogeneity of serotonergic neurons at multiple levels, comprising their electrophysiological properties, suggesting the existence of functionally distinct cellular subpopulations. In order to examine in an unbiased manner whether serotonergic neurons of the dorsal raphe nucleus (DRN) are heterogeneous, we used a non-invasive loose-seal cell-attached method to record α1 adrenergic receptor-stimulated spiking of a large sample of neurons in brain slices obtained from transgenic mice lines that express fluorescent marker proteins under the control of serotonergic system-specific Tph2 and Pet-1 promoters. We found wide homogeneous distribution of firing rates, well fitted by a single Gaussian function (r (2) = 0.93) and independent of anatomical location (P = 0.45), suggesting that in terms of intrinsic firing properties, serotonergic neurons in the DRN represent a single cellular population. Characterization of the population in terms of spiking regularity was hindered by its dependence on the firing rate. For instance, the coefficient of variation of the interspike intervals (ISI), a common measure of spiking irregularity, is of limited usefulness since it correlates negatively with the firing rate (r = -0.33, P < 0.0001). Nevertheless, the majority of neurons exhibited regular, pacemaker-like activity, with coefficient of variance of the ISI lower than 0.5 in ~97% of cases. Unexpectedly, a small percentage of neurons (~1%) exhibited a particular spiking pattern, characterized by low frequency (~0.02-0.1 Hz) oscillations in the firing rate. Transitions between regular and oscillatory firing were observed, suggesting that the oscillatory firing is an alternative firing pattern of serotonergic neurons.

13.
Neuropharmacology ; 104: 105-30, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26581499

RESUMO

Ischemia is a multifactorial pathology characterized by different events evolving in the time. After ischemia a primary damage due to the early massive increase of extracellular glutamate is followed by activation of resident immune cells, i.e microglia, and production or activation of inflammation mediators. Protracted neuroinflammation is now recognized as the predominant mechanism of secondary brain injury progression. Extracellular concentrations of ATP and adenosine in the brain increase dramatically during ischemia in concentrations able to stimulate their respective specific P2 and P1 receptors. Both ATP P2 and adenosine P1 receptor subtypes exert important roles in ischemia. Although adenosine exerts a clear neuroprotective effect through A1 receptors during ischemia, the use of selective A1 agonists is hampered by undesirable peripheral effects. Evidence up to now in literature indicate that A2A receptor antagonists provide protection centrally by reducing excitotoxicity, while agonists at A2A (and possibly also A2B) and A3 receptors provide protection by controlling massive infiltration and neuroinflammation in the hours and days after brain ischemia. Among P2X receptors most evidence indicate that P2X7 receptor contribute to the damage induced by the ischemic insult due to intracellular Ca(2+) loading in central cells and facilitation of glutamate release. Antagonism of P2X7 receptors might represent a new treatment to attenuate brain damage and to promote proliferation and maturation of brain immature resident cells that can promote tissue repair following cerebral ischemia. Among P2Y receptors, antagonists of P2Y12 receptors are of value because of their antiplatelet activity and possibly because of additional anti-inflammatory effects. Moreover strategies that modify adenosine or ATP concentrations at injury sites might be of value to limit damage after ischemia. This article is part of the Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.


Assuntos
Trifosfato de Adenosina/metabolismo , Adenosina/metabolismo , Isquemia Encefálica/metabolismo , Receptores Purinérgicos P1/metabolismo , Receptores Purinérgicos P2/metabolismo , Animais , Encefalite/metabolismo , Humanos , Antagonistas de Receptores Purinérgicos P1/farmacologia , Antagonistas do Receptor Purinérgico P2/farmacologia , Transdução de Sinais
14.
PLoS One ; 10(10): e0140369, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26460748

RESUMO

G protein-activated inwardly rectifying potassium (GIRK) channels in 5-HT neurons are assumed to be principal effectors of 5-hydroxytryptamine 1A (5-HT1A) autoreceptors, but their pharmacology, subunit composition and the role in regulation of 5-HT neuron activity have not been fully elucidated. We sought for a pharmacological tool for assessing the functional role of GIRK channels in 5-HT neurons by characterizing the effects of drugs known to block GIRK channels in the submicromolar range of concentrations. Whole-cell voltage-clamp recording in brainstem slices were used to determine concentration-response relationships for the selected GIRK channel blockers on 5-HT1A autoreceptor-activated inwardly rectifying K+ conductance in rat dorsal raphe 5-HT neurons. 5-HT1A autoreceptor-activated GIRK conductance was completely blocked by the nonselective inwardly rectifying potassium channels blocker Ba2+ (EC50 = 9.4 µM, full block with 100 µM) and by SCH23390 (EC50 = 1.95 µM, full block with 30 µM). GIRK-specific blocker tertiapin-Q blocked 5-HT1A autoreceptor-activated GIRK conductance with high potency (EC50 = 33.6 nM), but incompletely, i.e. ~16% of total conductance resulted to be tertiapin-Q-resistant. U73343 and SCH28080, reported to block GIRK channels with submicromolar EC50s, were essentially ineffective in 5-HT neurons. Our data show that inwardly rectifying K+ channels coupled to 5-HT1A autoreceptors display pharmacological properties generally expected for neuronal GIRK channels, but different from GIRK1-GIRK2 heteromers, the predominant form of brain GIRK channels. Distinct pharmacological properties of GIRK channels in 5-HT neurons should be explored for the development of new therapeutic agents for mood disorders.


Assuntos
Núcleo Dorsal da Rafe/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Neurônios Serotoninérgicos/metabolismo , Animais , Bário/farmacologia , Venenos de Abelha/farmacologia , Benzazepinas/farmacologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Condutividade Elétrica , Estrenos/farmacologia , Masculino , Maleatos/farmacologia , Pirrolidinonas/farmacologia , Ratos Wistar , Neurônios Serotoninérgicos/efeitos dos fármacos
15.
Eur Neuropsychopharmacol ; 25(11): 2022-35, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26409296

RESUMO

Considerable evidence links dysfunction of serotonin (5-hydroxytryptamine, 5-HT) transmission to neurodevelopmental and psychiatric disorders characterized by compromised "social" cognition and emotion regulation. It is well established that the brain 5-HT system is under autoregulatory control by its principal transmitter 5-HT via its effects on activity and expression of 5-HT system-related proteins. To examine whether 5-HT itself also has a crucial role in the acquisition and maintenance of characteristic rhythmic firing of 5-HT neurons, we compared their intrinsic electrophysiological properties in mice lacking brain 5-HT, i.e. tryptophan hydroxylase-2 null mice (Tph2(-/-)) and their littermates, Tph2(+/-) and Tph2(+/+), by using whole-cell patch-clamp recordings in a brainstem slice preparation and single unit recording in anesthetized animals. We report that the active properties of dorsal raphe nucleus (DRN) 5-HT neurons in vivo (firing rate magnitude and variability; the presence of spike doublets) and in vitro (firing in response to depolarizing current pulses; action potential shape) as well as the resting membrane potential remained essentially unchanged across Tph2 genotypes. However, there were subtle differences in subthreshold properties, most notably, an approximately 25% higher input conductance in Tph2(-/-) mice compared with Tph2(+/-) and Tph2(+/+) littermates (p<0.0001). This difference may at least in part be a consequence of slightly bigger size of the DRN 5-HT neurons in Tph2(-/-) mice (approximately 10%, p<0.0001). Taken together, these findings show that 5-HT neurons acquire and maintain their signature firing properties independently of the presence of their principal neurotransmitter 5-HT, displaying an unexpected functional resilience to complete brain 5-HT deficiency.


Assuntos
Potenciais de Ação/fisiologia , Núcleo Dorsal da Rafe/fisiologia , Neurônios Serotoninérgicos/fisiologia , Triptofano Hidroxilase/deficiência , Potenciais de Ação/efeitos dos fármacos , Animais , Núcleo Dorsal da Rafe/citologia , Núcleo Dorsal da Rafe/efeitos dos fármacos , Capacitância Elétrica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos Knockout , Microscopia de Fluorescência , Neurotransmissores/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo , Neurônios Serotoninérgicos/citologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Técnicas de Cultura de Tecidos , Triptofano Hidroxilase/genética
16.
Int J Neuropsychopharmacol ; 18(10): pyv045, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25899065

RESUMO

BACKGROUND: The neurobiological changes underlying depression resistant to treatments remain poorly understood, and failure to respond to selective serotonin reuptake inhibitors may result from abnormalities of neurotransmitter systems that excite serotonergic neurons, such as histamine. METHODS: Using behavioral (tail suspension test) and neurochemical (in vivo microdialysis, Western-blot analysis) approaches, here we report that antidepressant responses to selective serotonin reuptake inhibitors (citalopram or paroxetine) are abolished in mice unable to synthesize histamine due to either targeted disruption of histidine decarboxylase gene (HDC(-/-)) or injection of alpha-fluoromethylhistidine, a suicide inhibitor of this enzyme. RESULTS: In the tail suspension test, all classes of antidepressants tested reduced the immobility time of controls. Systemic reboxetine or imipramine reduced the immobility time of histamine-deprived mice as well, whereas selective serotonin reuptake inhibitors did not even though their serotonergic system is functional. In in vivo microdialysis experiments, citalopram significantly increased histamine extraneuronal levels in the cortex of freely moving mice, and methysergide, a serotonin 5-HT1/5-HT2 receptor antagonist, abolished this effect, thus suggesting the involvement of endogenous serotonin. CREB phosphorylation, which is implicated in the molecular mechanisms of antidepressant treatment, was abolished in histamine-deficient mice treated with citalopram. The CREB pathway is not impaired in HDC(-/-) mice, as administration of 8-bromoadenosine 3', 5'-cyclic monophosphate increased CREB phosphorylation, and in the tail suspension test it significantly reduced the time spent immobile by mice of both genotypes. CONCLUSIONS: Our results demonstrate that selective serotonin reuptake inhibitors selectively require the integrity of the brain histamine system to exert their preclinical responses.


Assuntos
Encéfalo/efeitos dos fármacos , Citalopram/farmacologia , Transtorno Depressivo/tratamento farmacológico , Histamina/metabolismo , Paroxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , 8-Bromo Monofosfato de Adenosina Cíclica/metabolismo , Animais , Antidepressivos/farmacologia , Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Transtorno Depressivo/metabolismo , Transtorno Depressivo Resistente a Tratamento/metabolismo , Modelos Animais de Doenças , Feminino , Histidina Descarboxilase/genética , Histidina Descarboxilase/metabolismo , Masculino , Metilistidinas/metabolismo , Metisergida/farmacologia , Camundongos Knockout , Antagonistas da Serotonina/farmacologia
17.
J Gen Physiol ; 145(3): 225-51, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25712017

RESUMO

The firing activity of serotonergic neurons in raphe nuclei is regulated by negative feedback exerted by extracellular serotonin (5-HT)o acting through somatodendritic 5-HT1A autoreceptors. The steady-state [5-HT]o, sensed by 5-HT1A autoreceptors, is determined by the balance between the rates of 5-HT release and reuptake. Although it is well established that reuptake of 5-HTo is mediated by 5-HT transporters (SERT), the release mechanism has remained unclear. It is also unclear how selective 5-HT reuptake inhibitor (SSRI) antidepressants increase the [5-HT]o in raphe nuclei and suppress serotonergic neuron activity, thereby potentially diminishing their own therapeutic effect. Using an electrophysiological approach in a slice preparation, we show that, in the dorsal raphe nucleus (DRN), continuous nonexocytotic 5-HT release is responsible for suppression of phenylephrine-facilitated serotonergic neuron firing under basal conditions as well as for autoinhibition induced by SSRI application. By using 5-HT1A autoreceptor-activated G protein-gated inwardly rectifying potassium channels of patched serotonergic neurons as 5-HTo sensors, we show substantial nonexocytotic 5-HT release under conditions of abolished firing activity, Ca(2+) influx, vesicular monoamine transporter 2-mediated vesicular accumulation of 5-HT, and SERT-mediated 5-HT transport. Our results reveal a cytosolic origin of 5-HTo in the DRN and suggest that 5-HTo may be supplied by simple diffusion across the plasma membrane, primarily from the dense network of neurites of serotonergic neurons surrounding the cell bodies. These findings indicate that the serotonergic system does not function as a sum of independently acting neurons but as a highly interdependent neuronal network, characterized by a shared neurotransmitter pool and the regulation of firing activity by an interneuronal, yet activity-independent, nonexocytotic mechanism.


Assuntos
Potenciais de Ação , Exocitose , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Animais , Cálcio/metabolismo , Células Cultivadas , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Masculino , Ratos , Ratos Wistar , Neurônios Serotoninérgicos/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
18.
J Neural Transm (Vienna) ; 122(2): 177-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24872079

RESUMO

Encoding of episodic memory requires long-term potentiation (LTP) of neurotransmission at excitatory synapses of the hippocampal circuitry. Previous data obtained with the application of exogenous 5-hydroxytryptamine (5-HT) in hippocampal slices indicate that 5-HT blocks LTP, which contrasts with the facilitatory effect of selective serotonin reuptake inhibitors (SSRIs) on learning and memory observed in vivo. Here, we investigated the effects of endogenous 5-HT, released from terminals by the monoamine releaser 3,4-methylenedioxymethamphetamine (MDMA), on LTP of field EPSPs induced by theta-burst stimulation and recorded at CA3/CA1 synapses of rat hippocampal slices. LTP was greater in the presence of MDMA (10 µM; 45.76 ± 15.75%; n = 28) than in controls (31.26 ± 11.03; n = 21; p < 0.01). This facilitatory effect on LTP persisted when the entry of MDMA in noradrenergic terminals was prevented by the selective noradrenaline reuptake inhibitor nisoxetine (44.90 ± 14.07%; n = 27 vs. 34.49 ± 12.94%; n = 20 in controls; p < 0.05). In both conditions, the facilitation of LTP was abolished by the SSRI citalopram that prevented the entry of MDMA in 5-HT terminals and the subsequent 5-HT release. These data show that, unlike exogenous 5-HT application, release of endogenous 5-HT does not impair cellular mechanisms responsible for induction of LTP, indicating that 5-HT is not detrimental to learning and memory. Moreover, facilitation of LTP by endogenous 5-HT may underlie the in vivo positive effects of augmented 5-HT tone on cognitive performance.


Assuntos
Região CA1 Hipocampal/citologia , Região CA3 Hipocampal/citologia , Potenciação de Longa Duração/fisiologia , Células Piramidais/fisiologia , Serotonina/metabolismo , Sinapses/fisiologia , Análise de Variância , Animais , Biofísica , Estimulação Elétrica , Fluoxetina/análogos & derivados , Fluoxetina/farmacologia , Técnicas In Vitro , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Células Piramidais/efeitos dos fármacos , Ratos , Ratos Wistar , Serotoninérgicos/farmacologia , Sinapses/efeitos dos fármacos
19.
Front Pharmacol ; 4: 97, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935583

RESUMO

Firing activity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert-/-) and tryptophan hydroxylase-2 knockout (Tph2-/-) mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2-/- mice and Sert-/- mice, respectively. While 5-HT neurons from Tph2-/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert-/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP), neurons from both Tph2-/- and Sert-/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling.

20.
J Neurosci ; 33(20): 8678-88, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23678112

RESUMO

Numerous studies link decreased serotonin metabolites with increased impulsive and aggressive traits. However, although pharmacological depletion of serotonin is associated with increased aggression, interventions aimed at directly decreasing serotonin neuron activity have supported the opposite association. Furthermore, it is not clear if altered serotonin activity during development may contribute to some of the observed associations. Here, we used two pharmacogenetic approaches in transgenic mice to selectively and reversibly reduce the firing of serotonin neurons in behaving animals. Conditional overexpression of the serotonin 1A receptor (Htr1a) in serotonin neurons showed that a chronic reduction in serotonin neuron firing was associated with heightened aggression. Overexpression of Htr1a in adulthood, but not during development, was sufficient to increase aggression. Rapid suppression of serotonin neuron firing by agonist treatment of mice expressing Htr1a exclusively in serotonin neurons also led to increased aggression. These data confirm a role of serotonin activity in setting thresholds for aggressive behavior and support a direct association between low levels of serotonin homeostasis and increased aggression.


Assuntos
Potenciais de Ação/fisiologia , Agressão/fisiologia , Inibição Neural/fisiologia , Núcleos da Rafe/citologia , Neurônios Serotoninérgicos/fisiologia , Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/toxicidade , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/genética , Animais , Ansiedade/tratamento farmacológico , Ansiedade/etiologia , Ansiedade/genética , Ansiedade/patologia , Autorradiografia , Distribuição de Qui-Quadrado , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Hipotermia/induzido quimicamente , Isótopos de Iodo/farmacocinética , Locomoção/efeitos dos fármacos , Locomoção/genética , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Inibição Neural/efeitos dos fármacos , Inibição Neural/genética , Técnicas de Patch-Clamp , Piperazinas/farmacocinética , Piridinas/farmacocinética , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1A de Serotonina/metabolismo , Serotoninérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Agonistas do Receptor de Serotonina/toxicidade , Fatores de Tempo , Triptofano Hidroxilase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...