Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(14)2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37343590

RESUMO

Objective. Megavoltage cone-beam computed tomography (MV-CBCT) imaging offers several advantages including reduced metal artifacts and accurate electron density mapping for adaptive or emergent situations. However, MV-CBCT imaging is limited by the poor efficiency of current detectors. Here we examine a new MV imager and compare CBCT reconstructions under clinically relevant scenarios.Approach. A multilayer imager (MLI), consisting of four vertically stacked standard flat-panel imagers, was mounted to a clinical linear accelerator. A custom anthropomorphic pelvis phantom with replaceable femoral heads was imaged using MV-CBCT and kilovoltage CBCT (kV-CBCT). Bone, aluminum, and titanium were used as femoral head inserts. 8 MU 2.5 MV scans were acquired for all four layers and (as reference) the top layer. Prostate and bladder were contoured on a reference CT and transferred to the other scans after rigid registration, from which the structural similarity index measure (SSIM) was calculated. Prostate and bladder were also contoured on CBCT scans without guidance, and Dice coefficients were compared to CT contours.Main results. kV-CBCT demonstrated the highest SSIMs with bone inserts (prostate: 0.86, bladder: 0.94) and lowest with titanium inserts (0.32, 0.37). Four-layer MV-CBCT SSIMs were preserved with bone (0.75, 0.80) as compared to titanium (0.67, 0.74), outperforming kV-CBCT when metal is present. One-layer MV-CBCT consistently underperformed four-layer results across all phantom configurations. Unilateral titanium inserts and bilateral aluminum insert results fell between the bone and bilateral titanium results. Dice coefficients trended similarly, with four-layer MV-CBCT reducing metal artifact impact relative to KV-CBCT to provide better soft-tissue identification.Significance. MV-CBCT with a four-layer MLI showed improvement over single-layer MV scans, approaching kV-CBCT quality for soft-tissue contrast. In the presence of artifact-producing metal implants, four-layer MV-CBCT scans outperformed kV-CBCT by eliminating artifacts and single-layer MV-CBCT by reducing noise. MV-CBCT with a novel multi-layer imager may be a valuable alternative to kV-CBCT, particularly in the presence of metal.


Assuntos
Artefatos , Tomografia Computadorizada de Feixe Cônico Espiral , Titânio , Alumínio , Tomografia Computadorizada de Feixe Cônico/métodos , Metais , Imagens de Fantasmas
2.
Environ Pollut ; 247: 658-667, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30711821

RESUMO

Aircraft soot has a significant impact on global and local air pollution and is of particular concern for the population working at airports and living nearby. The morphology and chemistry of soot are related to its reactivity and depend mainly on engine operating conditions and fuel-type. We investigated the morphology (by transmission electron microscopy) and chemistry (by X-ray micro-spectroscopy) of soot from the exhaust of a CFM 56-7B26 turbofan engine, currently the most common engine in aviation fleet, operated in the test cell of SR Technics, Zurich airport. Standard kerosene (Jet A-1) and a biofuel blend (Jet A-1 with 32% HEFA) were used at ground idle and climb-out engine thrust, as these conditions highly influence air quality at airport areas. The results indicate that soot reactivity decreases from ground idle to climb-out conditions for both fuel types. Nearly one third of the primary soot particles generated by the blended fuel at climb-out engine thrust bear an outer amorphous shell implying higher reactivity. This characteristic referring to soot reactivity needs to be taken into account when evaluating the advantage of HEFA blending at high engine thrust. The soot type that is most prone to react with its surrounding is generated by Jet A-1 fuel at ground idle. Biofuel blending slightly lowers soot reactivity at ground idle but does the opposite at climb-out conditions. As far as soot reactivity is concerned, biofuels can prove beneficial for airports where ground idle is a common situation; the benefit of biofuels for climb-out conditions is uncertain.


Assuntos
Poluentes Atmosféricos/análise , Aeronaves , Biocombustíveis , Fuligem/química , Emissões de Veículos/análise , Poluentes Atmosféricos/química , Poluição do Ar , Hidrocarbonetos , Querosene , Microscopia Eletrônica de Transmissão , Análise Espectral , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...