Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 168: 239-251, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34656860

RESUMO

Nitrate and potassium nutrition is tightly coordinated in vascular plants. Physiological and molecular genetics studies have demonstrated that several NPF/NRT1 nitrate transporters have a significant impact on both uptake and the root-shoot partition of these nutrients. However, how these traits are biochemically connected remain controversial since some NPF proteins, e.g. NPF7.3/NRT1.5, have been suggested to mediate K+/H+ exchange instead of nitrate fluxes. Here we show that NPF6.2/NRT1.4, a protein that gates nitrate accumulation at the leaf petiole of Arabidopsis thaliana, also affects the root/shoot distribution of potassium. We demonstrate that NPF6.2/NRT1.4 is a plasma membrane nitrate transporter phosphorylated at threonine-98 by the CIPK23 protein kinase that is a regulatory hub for nitrogen and potassium nutrition. Heterologous expression of NPF6.2/NRT1.4 and NPF7.3/NRT1.5 in yeast mutants with altered potassium uptake and efflux systems showed no evidence of nitrate-dependent potassium transport by these proteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Mutação , Transportadores de Nitrato , Nitratos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Proteínas Quinases
2.
New Phytol ; 231(5): 1956-1967, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34080200

RESUMO

Iron (Fe) is an essential element, its transport is regulated by the cell redox balance. In seeds, Fe enters the embryo as Fe2+ and is stored in vacuoles as Fe3+ . Through its ferric reduction activity, ascorbate plays a major role in Fe redox state and therefore Fe transport within the seed. We searched for ascorbate membrane transporters responsible for controlling Fe reduction by screening the yeast ferric reductase-deficient fre1 strain and isolated AtDTX25, a member of the Multidrug And Toxic compound Extrusion (MATE) family. AtDTX25 was shown to mediate ascorbate efflux when expressed in yeast and Xenopus oocytes, in a pH-dependent manner. In planta, AtDTX25 is highly expressed during germination and encodes a vacuolar membrane protein. Isolated vacuoles from AtDTX25-1 knockout mutant contained less ascorbate and more Fe than wild-type (WT), and mutant seedlings were highly sensitive to Fe deficiency. Iron imaging further showed that the remobilisation of Fe from vacuoles was highly impaired in mutant seedlings. Taken together, our results established AtDTX25 as a vacuolar ascorbate transporter, required during germination to promote the reduction of the pool of stored Fe3+ and its remobilisation to feed the developing seedling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte de Cátions , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ferro/metabolismo , Vacúolos/metabolismo
3.
Int J Mol Sci ; 22(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562460

RESUMO

Post-translational regulations of Shaker-like voltage-gated K+ channels were reported to be essential for rapid responses to environmental stresses in plants. In particular, it has been shown that calcium-dependent protein kinases (CPKs) regulate Shaker channels in plants. Here, the focus was on KAT2, a Shaker channel cloned in the model plant Arabidopsis thaliana, where is it expressed namely in the vascular tissues of leaves. After co-expression of KAT2 with AtCPK6 in Xenopuslaevis oocytes, voltage-clamp recordings demonstrated that AtCPK6 stimulates the activity of KAT2 in a calcium-dependent manner. A physical interaction between these two proteins has also been shown by Förster resonance energy transfer by fluorescence lifetime imaging (FRET-FLIM). Peptide array assays support that AtCPK6 phosphorylates KAT2 at several positions, also in a calcium-dependent manner. Finally, K+ fluorescence imaging in planta suggests that K+ distribution is impaired in kat2 knock-out mutant leaves. We propose that the AtCPK6/KAT2 couple plays a role in the homeostasis of K+ distribution in leaves.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Animais , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sinalização do Cálcio , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Feminino , Transferência Ressonante de Energia de Fluorescência , Técnicas de Inativação de Genes , Técnicas In Vitro , Modelos Moleculares , Oócitos/metabolismo , Imagem Óptica , Técnicas de Patch-Clamp , Fosforilação , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Potássio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/deficiência , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Xenopus laevis
4.
Plant Cell Physiol ; 61(7): 1321-1334, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32379873

RESUMO

HKT1;5 loci/alleles are important determinants of crop salinity tolerance. HKT1;5s encode plasmalemma-localized Na+ transporters, which move xylem Na+ into xylem parenchyma cells, reducing shoot Na+ accumulation. Allelic variation in rice OsHKT1;5 sequence in specific landraces (Nona Bokra OsHKT1;5-NB/Nipponbare OsHKT1;5-Ni) correlates with variation in salt tolerance. Oryza coarctata, a halophytic wild rice, grows in fluctuating salinity at the seawater-estuarine interface in Indian and Bangladeshi coastal regions. The distinct transport characteristics of the shoots and roots expressing the O. coarctata OcHKT1;5 transporter are reported vis-à-vis OsHKT1;5-Ni. Yeast sodium extrusion-deficient cells expressing OcHKT1;5 are sensitive to increasing Na+ (10-100 mM). Electrophysiological measurements in Xenopus oocytes expressing O. coarctata or rice HKT1;5 transporters indicate that OcHKT1;5, like OsHKT1;5-Ni, is a Na+-selective transporter, but displays 16-fold lower affinity for Na+ and 3.5-fold higher maximal conductance than OsHKT1;5-Ni. For Na+ concentrations >10 mM, OcHKT1;5 conductance is higher than that of OsHKT1;5-Ni, indicating the potential of OcHKT1;5 for increasing domesticated rice salt tolerance. Homology modeling/simulation suggests that four key amino-acid changes in OcHKT1;5 (in loops on the extracellular side; E239K, G207R, G214R, L363V) account for its lower affinity and higher Na+ conductance vis-à-vis OsHKT1;5-Ni. Of these, E239K in OcHKT1;5 confers lower affinity for Na+ transport, as evidenced by Na+ transport assays of reciprocal site-directed mutants for both transporters (OcHKT1;5-K239E, OsHKT1;5-Ni-E270K) in Xenopus oocytes. Both transporters have likely analogous roles in xylem sap desalinization, and differences in xylem sap Na+ concentrations in both species are attributed to differences in Na+ transport affinity/conductance between the transporters.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Aminoácidos , Animais , Proteínas de Transporte de Cátions/genética , Membrana Celular/metabolismo , Oócitos/metabolismo , Organismos Geneticamente Modificados , Oryza/genética , Proteínas de Plantas/genética , Plantas Tolerantes a Sal/genética , Plantas Tolerantes a Sal/metabolismo , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Xenopus , Xilema/metabolismo
5.
Front Plant Sci ; 11: 144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174938

RESUMO

Few proteins have been characterized as abscisic acid transporters. Several of them are NRT1/PRT Family (NPF) transporters which have been characterized in yeast using reporter systems. Because several members of the NPF4 subfamily members were identified in yeast as ABA transporters, here, we screened for ABA transport activity the seven members of the NPF4 subfamily in Xenopus oocytes using cRNA injection and 3H-ABA accumulation. The ABA transport capacities of NPF4.2, NPF4.5, NPF4.6, and NPF4.7 were confirmed. The transport properties of NPF4.5 and NPF4.6 were studied in more detail. Both ABA transporter activities are pH-dependent and slightly pH-dependent apparent Km around 500 µM. There is no competitive inhibition of the ABA-analogs pyrabactin and quinabactin on ABA accumulation demonstrating a different selectivity compared to the ABA receptors. Functional expression of these ABA transporters in Xenopus oocyte is an opportunity to start structure-function studies and also to identify partner proteins of these hormone transporters.

6.
Plant Physiol ; 181(3): 1277-1294, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451552

RESUMO

Potassium (K+) is a key monovalent cation necessary for multiple aspects of cell growth and survival. In plants, this cation also plays a key role in the control of stomatal movement. KAT1 and its homolog KAT2 are the main inward rectifying channels present in guard cells, mediating K+ influx into these cells, resulting in stomatal opening. To gain further insight into the regulation of these channels, we performed a split-ubiquitin protein-protein interaction screen searching for KAT1 interactors in Arabidopsis (Arabidopsis thaliana). We characterized one of these candidates, BCL2-ASSOCIATED ATHANOGENE4 (BAG4), in detail using biochemical and genetic approaches to confirm this interaction and its effect on KAT1 activity. We show that BAG4 improves KAT1-mediated K+ transport in two heterologous systems and provide evidence that in plants, BAG4 interacts with KAT1 and favors the arrival of KAT1 at the plasma membrane. Importantly, lines lacking or overexpressing the BAG4 gene show altered KAT1 plasma membrane accumulation and alterations in stomatal movement. Our data allowed us to identify a KAT1 regulator and define a potential target for the plant BAG family. The identification of physiologically relevant regulators of K+ channels will aid in the design of approaches that may impact drought tolerance and pathogen susceptibility.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Estômatos de Plantas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Técnicas de Patch-Clamp , Estômatos de Plantas/fisiologia , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo
7.
FEBS Lett ; 591(13): 1982-1992, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28543075

RESUMO

A complex signaling network involving voltage-gated potassium channels from the Shaker family contributes to the regulation of stomatal aperture. Several kinases and phosphatases have been shown to be crucial for ABA-dependent regulation of the ion transporters. To date, the Ca2+ -dependent regulation of Shaker channels by Ca2+ -dependent protein kinases (CPKs) is still elusive. A functional screen in Xenopus oocytes was launched to identify such CPKs able to regulate the three main guard cell Shaker channels KAT1, KAT2, and GORK. Seven guard cell CPKs were tested and multiple CPK/Shaker couples were identified. Further work on CPK33 indicates that GORK activity is enhanced by CPK33 and unaffected by a nonfunctional CPK33 (CPK33-K102M). Furthermore, Ca2+ -induced stomatal closure is impaired in two cpk33 mutant plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Canais de Potássio/metabolismo , Proteínas Quinases/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cálcio/farmacologia , Técnicas de Inativação de Genes , Movimento/efeitos dos fármacos , Mutação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteínas Quinases/deficiência , Proteínas Quinases/genética
8.
J Exp Bot ; 68(12): 3107-3113, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28186545

RESUMO

The conventional approach to categorizing transporters has been to class them according to their sequence homology, defining a 'family' (or a 'superfamily' if they are numerous), and according to their substrate specificity or selectivity. This general view is still relevant for some transporters, but it is being increasingly challenged. Here, we take the NRT1/PTR FAMILY (NPF) as one such example. NPF members do indeed display sequence and structural homologies with peptide transporter (PTR) proteins involved in the uptake of di- and tri-peptides in most other organisms. And in plants they were initially characterized as nitrate or peptide transporters. However, in recent years several other substrates have been identified, namely nitrite, chloride, glucosinolates, auxin (IAA), abscisic acid (ABA), jasmonates (JAs), and gibberellins (GAs). Some of these transporters are even capable of transporting more than one different substrate (e.g. nitrate/auxin, nitrate/ABA, nitrate/glucosinolates, or GA/JA). In this review, we give an overview of the substrate-specificity of the Arabidopsis NPF.


Assuntos
Proteínas de Transporte de Ânions/química , Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Especificidade por Substrato
9.
Sci Signal ; 8(375): ra43, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25943353

RESUMO

Living organisms sense and respond to changes in nutrient availability to cope with diverse environmental conditions. Nitrate (NO3-) is the main source of nitrogen for plants and is a major component in fertilizer. Unraveling the molecular basis of nitrate sensing and regulation of nitrate uptake should enable the development of strategies to increase the efficiency of nitrogen use and maximize nitrate uptake by plants, which would aid in reducing nitrate pollution. NPF6.3 (also known as NRT1.1), which functions as a nitrate sensor and transporter; the kinase CIPK23; and the calcium sensor CBL9 form a complex that is crucial for nitrate sensing in Arabidopsis thaliana. We identified two additional components that regulate nitrate transport, sensing, and signaling: the calcium sensor CBL1 and protein phosphatase 2C family member ABI2, which is inhibited by the stress-response hormone abscisic acid. Bimolecular fluorescence complementation assays and in vitro kinase assays revealed that ABI2 interacted with and dephosphorylated CIPK23 and CBL1. Coexpression studies in Xenopus oocytes and analysis of plants deficient in ABI2 indicated that ABI2 enhanced NPF6.3-dependent nitrate transport, nitrate sensing, and nitrate signaling. These findings suggest that ABI2 may functionally link stress-regulated control of growth and nitrate uptake and utilization, which are energy-expensive processes.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Estresse Fisiológico , Ácido Abscísico/genética , Animais , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Arabidopsis/genética , Transporte Biológico Ativo/fisiologia , Fosfoproteínas Fosfatases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xenopus laevis
10.
Sci Rep ; 5: 7962, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25608465

RESUMO

Dipeptide (Leu-Leu) and nitrate transport activities of 26 Arabidopsis NPF (NRT1/PTR Family) proteins were screened in Saccharomyces cerevisiae and Xenopus laevis oocytes, respectively. Dipeptide transport activity has been confirmed for 2 already known dipeptide transporters (AtNPF8.1 and AtNPF8.3) but none of the other tested NPFs displays dipeptide transport. The nitrate transport screen resulted in the identification of two new nitrate transporters, AtNPF5.5 and AtNPF5.10. The localization of the mRNA coding for NPF5.5 demonstrates that it is the first NPF transporter reported to be expressed in Arabidopsis embryo. Two independent homozygous npf5.5 KO lines display reduced total nitrogen content in the embryo as compared to WT plants, demonstrating an effect of NPF5.5 function on the embryo nitrogen content. Finally, NPF5.5 gene produces two different transcripts (AtNPF5.5a and AtNPF5.5b) encoding proteins with different N-terminal ends. Both proteins are able to transport nitrate in xenopus oocytes.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Arabidopsis/metabolismo , Nitrogênio/metabolismo , Sementes/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Arabidopsis/genética , Proteínas de Arabidopsis/química , Transporte Biológico , Dipeptídeos/metabolismo , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Dados de Sequência Molecular , Transportadores de Nitrato , Nitratos/metabolismo , Oócitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae/metabolismo , Xenopus
11.
Plant Physiol ; 166(1): 314-26, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25037208

RESUMO

Ca(2) (+)-dependent protein kinases (CPKs) form a large family of 34 genes in Arabidopsis (Arabidopsis thaliana). Based on their dependence on Ca(2+), CPKs can be sorted into three types: strictly Ca(2+)-dependent CPKs, Ca(2+)-stimulated CPKs (with a significant basal activity in the absence of Ca(2+)), and essentially calcium-insensitive CPKs. Here, we report on the third type of CPK, CPK13, which is expressed in guard cells but whose role is still unknown. We confirm the expression of CPK13 in Arabidopsis guard cells, and we show that its overexpression inhibits light-induced stomatal opening. We combine several approaches to identify a guard cell-expressed target. We provide evidence that CPK13 (1) specifically phosphorylates peptide arrays featuring Arabidopsis K(+) Channel KAT2 and KAT1 polypeptides, (2) inhibits KAT2 and/or KAT1 when expressed in Xenopus laevis oocytes, and (3) closely interacts in plant cells with KAT2 channels (Förster resonance energy transfer-fluorescence lifetime imaging microscopy). We propose that CPK13 reduces stomatal aperture through its inhibition of the guard cell-expressed KAT2 and KAT1 channels.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Estômatos de Plantas/enzimologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteínas Quinases/metabolismo , Animais , Cálcio/metabolismo , Microscopia de Fluorescência , Técnicas de Patch-Clamp , Fosforilação , Xenopus laevis
12.
Front Plant Sci ; 5: 43, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24600459

RESUMO

Calcium (Ca(2+)) is a second messenger involved in many plant signaling processes. Biotic and abiotic stimuli induce Ca(2+) signals within plant cells, which, when decoded, enable these cells to adapt in response to environmental stresses. Multiple examples of Ca(2+) signals from plants containing the fluorescent yellow cameleon sensor (YC) have contributed to the definition of the Ca(2+) signature in some cell types such as root hairs, pollen tubes and guard cells. YC is, however, of limited use in highly autofluorescent plant tissues, in particular mesophyll cells. Alternatively, the bioluminescent reporter aequorin enables Ca(2+) imaging in the whole plant, including mesophyll cells, but this requires specific devices capable of detecting the low amounts of emitted light. Another type of Ca(2+) sensor, referred to as GFP-aequorin (G5A), has been engineered as a chimeric protein, which combines the two photoactive proteins from the jellyfish Aequorea victoria, the green fluorescent protein (GFP) and the bioluminescent protein aequorin. The Ca(2+)-dependent light-emitting property of G5A is based on a bioluminescence resonance energy transfer (BRET) between aequorin and GFP. G5A has been used for over 10 years for enhanced in vivo detection of Ca(2+) signals in animal tissues. Here, we apply G5A in Arabidopsis and show that G5A greatly improves the imaging of Ca(2+) dynamics in intact plants. We describe a simple method to image Ca(2+) signals in autofluorescent leaves of plants with a cooled charge-coupled device (cooled CCD) camera. We present data demonstrating how plants expressing the G5A probe can be powerful tools for imaging of Ca(2+) signals. It is shown that Ca(2+) signals propagating over long distances can be visualized in intact plant leaves and are visible mainly in the veins.

13.
Nat Commun ; 4: 2625, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24129639

RESUMO

The plant hormone auxin (indole-3-acetic acid, IAA) has a crucial role in plant development. Its spatiotemporal distribution is controlled by a combination of biosynthetic, metabolic and transport mechanisms. Four families of auxin transporters have been identified that mediate transport across the plasma or endoplasmic reticulum membrane. Here we report the discovery and the functional characterization of the first vacuolar auxin transporter. We demonstrate that WALLS ARE THIN1 (WAT1), a plant-specific protein that dictates secondary cell wall thickness of wood fibres, facilitates auxin export from isolated Arabidopsis vacuoles in yeast and in Xenopus oocytes. We unambiguously identify IAA and related metabolites in isolated Arabidopsis vacuoles, suggesting a key role for the vacuole in intracellular auxin homoeostasis. Moreover, local auxin application onto wat1 mutant stems restores fibre cell wall thickness. Our study provides new insight into the complexity of auxin transport in plants and a means to dissect auxin function during fibre differentiation.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Reguladores de Crescimento de Plantas/metabolismo , Vacúolos/metabolismo , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/farmacologia , Transporte Biológico , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Parede Celular/ultraestrutura , Redes Reguladoras de Genes , Homeostase , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Membrana Transportadoras/farmacologia , Mutação , Saccharomyces cerevisiae/metabolismo , Xenopus laevis/metabolismo
14.
Fungal Genet Biol ; 58-59: 53-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23850603

RESUMO

Mycorrhizal exchange of nutrients between fungi and host plants involves a specialization and polarization of the fungal plasma membrane adapted for the uptake from the soil and for secretion of nutrient ions towards root cells. In addition to the current progress in identification of membrane transport systems of both symbiotic partners, data concerning the transcriptional and translational regulation of these proteins are needed to elucidate their role for symbiotic functions. To answer whether the formerly described Pi-dependent expression of the phosphate transporter HcPT1.1 from Hebeloma cylindrosporum is the result of its promoter activity, we introduced promoter-EGFP fusion constructs in the fungus by Agrotransformation. Indeed, HcPT1.1 expression in pure fungal cultures quantified and visualized by EGFP under control of the HcPT1.1 promoter was dependent on external Pi concentrations, low Pi stimulating the expression. Furthermore, to study expression and localization of the phosphate transporter HcPT1.1 in symbiotic conditions, presence of transcripts and proteins was analyzed by the in situ hybridization technique as well as by immunostaining of proteins. In ectomycorrhiza, expression of the phosphate transporter was clearly enhanced by Pi-shortage indicating its role in Pi nutrition in the symbiotic association. Transcripts were detected in external hyphae and in the hyphal mantle, proteins in addition also within the Hartig net. Exploiting the transformable fungus H. cylindrosporum, Pi-dependent expression of the fungal transporter HcPT1.1 as result from its promoter activity as well as transcript and protein localization in ectomycorrhizal symbiosis are shown.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Micorrizas/metabolismo , Proteínas de Transporte de Fosfato/genética , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Regiões Promotoras Genéticas , Hebeloma/genética , Hebeloma/metabolismo , Hifas/genética , Hifas/crescimento & desenvolvimento , Hifas/metabolismo , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Pinus/microbiologia , Pinus/fisiologia , Transporte Proteico , Simbiose
15.
Trends Plant Sci ; 18(6): 325-33, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23453706

RESUMO

Abscisic acid (ABA) metabolism, perception, and transport form a triptych allowing higher plants to use ABA as a signaling molecule. The molecular bases of ABA metabolism are now well described and, over the past few years, several ABA receptors have been discovered. Although ABA transport has long been demonstrated in planta, the first breakthroughs in identifying plasma membrane-localized ABA transporters came in 2010, with the identification of two ATP-binding cassette (ABC) proteins. More recently, two ABA transporters in the nitrate transporter 1/peptide transporter (NRT1/PTR) family have been identified. In this review, we discuss the role of these different ABA transporters and examine the scientific impact of their identification. Given that the NRT1/PTR family is involved in the transport of nitrogen (N) compounds, further work should determine whether an interaction between ABA and N signaling or nutrition occurs.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Ácido Abscísico/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Membrana Transportadoras/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Transporte Biológico Ativo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Nitrato , Transdução de Sinais
16.
Cell Res ; 21(7): 1116-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21445098

RESUMO

Potassium (K(+)) channel function is fundamental to many physiological processes. However, components and mechanisms regulating the activity of plant K(+) channels remain poorly understood. Here, we show that the calcium (Ca(2+)) sensor CBL4 together with the interacting protein kinase CIPK6 modulates the activity and plasma membrane (PM) targeting of the K(+) channel AKT2 from Arabidopsis thaliana by mediating translocation of AKT2 to the PM in plant cells and enhancing AKT2 activity in oocytes. Accordingly, akt2, cbl4 and cipk6 mutants share similar developmental and delayed flowering phenotypes. Moreover, the isolated regulatory C-terminal domain of CIPK6 is sufficient for mediating CBL4- and Ca(2+)-dependent channel translocation from the endoplasmic reticulum membrane to the PM by a novel targeting pathway that is dependent on dual lipid modifications of CBL4 by myristoylation and palmitoylation. Thus, we describe a critical mechanism of ion-channel regulation where a Ca(2+) sensor modulates K(+) channel activity by promoting a kinase interaction-dependent but phosphorylation-independent translocation of the channel to the PM.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cálcio/metabolismo , Canais de Potássio/metabolismo , Proteínas Quinases/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas , Fenótipo , Fosforilação , Canais de Potássio/genética , Proteínas Quinases/genética , Transporte Proteico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...