Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 12376, 2024 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-38811794

RESUMO

Arachidonic acid (C20: 4n-6, AA) plays a fundamental role in fish physiology, influencing growth, survival and stress resistance. However, imbalances in dietary AA can have detrimental effects on fish health and performance. Optimal AA requirements for rainbow trout have not been established. This study aimed to elucidate the effects of varying dietary AA levels on survival, growth, long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic capacity, oxylipin profiles, lipid peroxidation, and stress resistance of rainbow trout fry. Over a period of eight weeks, 4000 female rainbow trout fry at the resorptive stage (0.12 g) from their first feeding were fed diets with varying levels of AA (0.6%, 1.1% or 2.5% of total fatty acids) while survival and growth metrics were closely monitored. The dietary trial was followed by an acute confinement stress test. Notably, while the fatty acid profiles of the fish reflected dietary intake, those fed an AA-0.6% diet showed increased expression of elongase5, highlighting their inherent ability to produce LC-PUFAs from C18 PUFAs and suggesting potential AA or docosapentaenoic acidn-6 (DPAn-6) biosynthesis. However, even with this biosynthetic capacity, the trout fed reduced dietary AA had higher mortality rates. The diet had no effect on final weight (3.38 g on average for the three diets). Conversely, increased dietary AA enhanced eicosanoid production from AA, suggesting potential inflammatory and oxidative consequences. This was further evidenced by an increase in non-enzymatic lipid oxidation metabolites, particularly in the AA-2.5% diet group, which had higher levels of phytoprostanes and isoprostanes, markers of cellular oxidative damage. Importantly, the AA-1.1% diet proved to be particularly beneficial for stress resilience. This was evidenced by higher post-stress turnover rates of serotonin and dopamine, neurotransmitters central to the fish's stress response. In conclusion, a dietary AA intake of 1.1% of total fatty acids appears to promote overall resilience in rainbow trout fry.


Assuntos
Ácido Araquidônico , Ácidos Graxos Insaturados , Oncorhynchus mykiss , Oxilipinas , Estresse Fisiológico , Animais , Oncorhynchus mykiss/metabolismo , Oxilipinas/metabolismo , Ácido Araquidônico/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Ração Animal/análise , Dieta/veterinária , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
2.
Antioxidants (Basel) ; 12(5)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37237897

RESUMO

This study aimed to determine the effects of dietary inclusion of Tenebrio molitor larvae (yellow worms) meal (TM) on meagre fish (Argyrosomus regius) whole-body fatty acids (FA) profile and hepatic and intestine oxidative status. For that purpose, fish were fed for 9 weeks a fishmeal-based diet (control) or diets including 10%, 20%, or 30% TM. With the increase in dietary TM level, whole-body oleic acid, linoleic acid, monounsaturated FA, and n-6 polyunsaturated FA (PUFA) increased while saturated FA (SFA), n-3 PUFA, n-3 long chain-PUFA, SFA:PUFA ratio, n3:n6 ratio, and FA retention decreased. Hepatic superoxide dismutase (SOD), glucose-6-phosphate dehydrogenase (G6PDH), and glutathione reductase (GR) activities increased and catalase (CAT) and glutathione peroxidase (GPX) activities decreased with dietary TM inclusion. Hepatic total and reduced glutathione were lower in fish fed 20% TM. Intestinal CAT activity and oxidized glutathione increased and GPX activity decreased with dietary TM inclusion. Intestine SOD, G6PDH, and GR activities increased and malondialdehyde concentration decreased in fish fed the diets with lower TM inclusion levels. Liver and intestine oxidative stress index and liver malondialdehyde concentration were unaffected by dietary TM. In conclusion, to avoid major whole-body FA changes or antioxidant status imbalances, it is recommended to limit TM to 10% inclusion in meagre diets.

3.
Animal ; 16(12): 100670, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36402111

RESUMO

It is now recognised that parental diets could alter their offspring metabolism, concept known as nutritional programming. For agronomic purposes, it has been previously proposed that programming could be employed as a strategy to prepare individual for future nutritional challenges. Concerning cultured fish that belong to high trophic level, plant-derived carbohydrates are a possible substitute for the traditional protein-rich fishmeal in broodstock diet, lowering thus the dietary protein-to-carbohydrate ratio (HC/LP nutrition). However, in mammals, numerous studies have previously demonstrated that parental HC/LP nutrition negatively affects their offspring in the long term. Therefore, the question of possible adaptation to plant-based diets, via parental nutrition, should be explored. First, the maternal HC/LP nutrition induced a global DNA hypomethylation in the liver of their offspring. Interestingly at the gene expression level, the effects brought by the maternal and paternal HC/LP nutrition cumulated in the liver, as indicated by the altered transcriptome. The paternal HC/LP nutrition significantly enhanced cholesterol synthesis at the transcriptomic level. Furthermore, hepatic genes involved in long-chain polyunsaturated fatty acids were significantly increased by the parental HC/LP nutrition, affecting thus both hepatic and muscle fatty acid profiles. Overall, the present study demonstrated that lipid metabolism could be modulated via a parental nutrition in rainbow trout, and that such modulations have consequences on their progeny phenotypes.


Assuntos
Metabolismo dos Lipídeos , Oncorhynchus mykiss , Animais , Dieta com Restrição de Proteínas/veterinária , Oncorhynchus mykiss/genética , Dieta/veterinária , Ácidos Graxos/metabolismo , Carboidratos da Dieta/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo
4.
Sci Rep ; 12(1): 16726, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202919

RESUMO

Reproductive performances, and the factors affecting them, are of major importance especially for farmed fish in the context of the development of a sustainable aquaculture. Dietary maternal lipids have been identified as a major factor affecting reproductive performances. Nevertheless, the consequences of carbohydrates have been little studied while plant-derived carbohydrates could be increasingly used in broodstock diets. To explore this issue, 2-year-old female trout were fed either a control diet that contains no carbohydrate and a high protein content (65.7%) or a diet formulated with plant-derived carbohydrates containing 32.5% carbohydrate and 42.9% protein ('HC diet') for an entire reproductive cycle. The reproductive performances, the quality of the unfertilized eggs and the development of the progeny were carefully monitored. Although the one year HC nutrition had not impaired female growth nor spawns quality, such nutrition had increased the variability of eggs size within spawns (+ 34.0%). Moreover, the eggs produced had a modified fatty acid profile, including a significant reduction in EPA content (- 22.9%) and a significant increase in the AA/EPA ratio (+ 33.3%). The progeny were impacted by such alterations as their survival rates were significantly reduced. A lower plant-derived carbohydrate inclusion (20%) should be considered in aquafeed for female broodstock in trout.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Materna , Ração Animal/análise , Animais , Aquicultura , Carboidratos , Dieta , Gorduras na Dieta , Ácidos Graxos/metabolismo , Feminino , Humanos , Truta/metabolismo
5.
J Anim Sci Biotechnol ; 13(1): 33, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35264245

RESUMO

BACKGROUND: The broodstock diet, and in particular the lipid and fatty acid composition of the diet, is known to play a key role in reproductive efficiency and survival of the progeny in fish. A major problem when replacing both fish meal and fish oil by plant sources is the lack of n-3 long chain polyunsaturated fatty acids, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). To address this problem, we studied the effect of the plant-based diet supplemented with Schizochytrium sp. microalgae, source of DHA, compared to a conventional commercial diet rich in fish meal and fish oil on reproductive performance and egg quality and the consequences on progeny, in female rainbow trout broodstock. RESULTS: The results demonstrated that DHA-rich microalgae supplementation in a plant-based diet allowed for the maintenance of reproductive performance and egg quality comparable to a conventional commercial feed rich in fish meal and fish oil and led to an increased significant fry survival after resorption. Moreover, when females were fed a plant-based diet supplemented with micro-algae, the 4-month-old progenies showed a significant higher growth when they were challenged with a similar diet as broodstock during 1 month. We provide evidence for metabolic programming in which the maternal dietary induced significant protracted effects on lipid metabolism of progeny. CONCLUSIONS: The present study demonstrates that supplementation of a plant-based diet with DHA-rich microalgae can be an effective alternative to fish meal and fish oil in rainbow trout broodstock aquafeed.

6.
BMC Genomics ; 22(1): 788, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732127

RESUMO

BACKGROUND: In response to major challenges regarding the supply and sustainability of marine ingredients in aquafeeds, the aquaculture industry has made a large-scale shift toward plant-based substitutions for fish oil and fish meal. But, this also led to lower levels of healthful n-3 long-chain polyunsaturated fatty acids (PUFAs)-especially eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids-in flesh. One potential solution is to select fish with better abilities to retain or synthesise PUFAs, to increase the efficiency of aquaculture and promote the production of healthier fish products. To this end, we aimed i) to estimate the genetic variability in fatty acid (FA) composition in visceral fat quantified by Raman spectroscopy, with respect to both individual FAs and groups under a feeding regime with limited n-3 PUFAs; ii) to study the genetic and phenotypic correlations between FAs and processing yields- and fat-related traits; iii) to detect QTLs associated with FA composition and identify candidate genes; and iv) to assess the efficiency of genomic selection compared to pedigree-based BLUP selection. RESULTS: Proportions of the various FAs in fish were indirectly estimated using Raman scattering spectroscopy. Fish were genotyped using the 57 K SNP Axiom™ Trout Genotyping Array. Following quality control, the final analysis contained 29,652 SNPs from 1382 fish. Heritability estimates for traits ranged from 0.03 ± 0.03 (n-3 PUFAs) to 0.24 ± 0.05 (n-6 PUFAs), confirming the potential for genomic selection. n-3 PUFAs are positively correlated to a decrease in fat deposition in the fillet and in the viscera but negatively correlated to body weight. This highlights the potential interest to combine selection on FA and against fat deposition to improve nutritional merit of aquaculture products. Several QTLs were identified for FA composition, containing multiple candidate genes with indirect links to FA metabolism. In particular, one region on Omy1 was associated with n-6 PUFAs, monounsaturated FAs, linoleic acid, and EPA, while a region on Omy7 had effects on n-6 PUFAs, EPA, and linoleic acid. When we compared the effectiveness of breeding programmes based on genomic selection (using a reference population of 1000 individuals related to selection candidates) or on pedigree-based selection, we found that the former yielded increases in selection accuracy of 12 to 120% depending on the FA trait. CONCLUSION: This study reveals the polygenic genetic architecture for FA composition in rainbow trout and confirms that genomic selection has potential to improve EPA and DHA proportions in aquaculture species.


Assuntos
Oncorhynchus mykiss , Animais , Ácidos Docosa-Hexaenoicos , Ácidos Graxos , Óleos de Peixe , Genômica , Humanos , Oncorhynchus mykiss/genética , Análise Espectral Raman
7.
J Nutr Sci ; 10: e13, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33889396

RESUMO

The long-term effect of a plant (P)-based diet was assessed by proton nuclear magnetic resonance (1H-NMR) metabolomics in rainbow trout fed a marine fish meal (FM)-fish oil (FO) diet (M), a P-based diet and a control commercial-like diet (C) starting with the first feeding. Growth performances were not heavily altered by long-term feeding on the P-based diet. An 1H-NMR metabolomic analysis of the feed revealed significantly different soluble chemical compound profiles between the diets. A set of soluble chemical compounds was found to be specific either to the P-based diet or to the M diet. Pterin, a biomarker of plant feedstuffs, was identified both in the P-based diet and in the plasma of fish fed the P-based diet. 1H-NMR metabolomic analysis on fish plasma and liver and muscle tissues at 6 and 48 h post feeding revealed significantly different profiles between the P-based diet and the M diet, while the C diet showed intermediate results. A higher amino acid content was found in the plasma of fish fed the P-based diet compared with the M diet after 48 h, suggesting either a delayed delivery of the amino acids or a lower amino acid utilisation in the P-based diet. This was associated with an accumulation of essential amino acids and the depletion of glutamine in the muscle, together with an accumulation of choline in the liver. Combined with an anticipated absorption of methionine and lysine supplemented in free form, the present results suggest an imbalanced essential amino acid supply for protein metabolism in the muscle and for specific functions of the liver.


Assuntos
Aminoácidos/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Dieta , Oncorhynchus mykiss , Ração Animal , Animais , Dieta/veterinária , Espectroscopia de Ressonância Magnética , Metabolômica , Plantas , Espectroscopia de Prótons por Ressonância Magnética
8.
Front Genet ; 12: 639223, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33692832

RESUMO

One of the top priorities of the aquaculture industry is the genetic improvement of economically important traits in fish, such as those related to processing and quality. However, the accuracy of genetic evaluations has been hindered by a lack of data on such traits from a sufficiently large population of animals. The objectives of this study were thus threefold: (i) to estimate genetic parameters of growth-, yield-, and quality-related traits in rainbow trout (Oncorhynchus mykiss) using three different phenotyping technologies [invasive and non-invasive: microwave-based, digital image analysis, and magnetic resonance imaging (MRI)], (ii) to detect quantitative trait loci (QTLs) associated with these traits, and (iii) to identify candidate genes present within these QTL regions. Our study collected data from 1,379 fish on growth, yield-related traits (body weight, condition coefficient, head yield, carcass yield, headless gutted carcass yield), and quality-related traits (total fat, percentage of fat in subcutaneous adipose tissue, percentage of fat in flesh, flesh colour); genotypic data were then obtained for all fish using the 57K SNP Axiom® Trout Genotyping array. Heritability estimates for most of the 14 traits examined were moderate to strong, varying from 0.12 to 0.67. Most traits were clearly polygenic, but our genome-wide association studies (GWASs) identified two genomic regions on chromosome 8 that explained up to 10% of the genetic variance (cumulative effects of two QTLs) for several traits (weight, condition coefficient, subcutaneous and total fat content, carcass and headless gutted carcass yields). For flesh colour traits, six QTLs explained 1-4% of the genetic variance. Within these regions, we identified several genes (htr1, gnpat, ephx1, bcmo1, and cyp2x) that have been implicated in adipogenesis or carotenoid metabolism, and thus represent good candidates for further functional validation. Finally, of the three techniques used for phenotyping, MRI demonstrated particular promise for measurements of fat content and distribution, while the digital image analysis-based approach was very useful in quantifying colour-related traits. This work provides new insights that may aid the development of commercial breeding programmes in rainbow trout, specifically with regard to the genetic improvement of yield and flesh-quality traits as well as the use of invasive and/or non-invasive technologies to predict such traits.

9.
Biochimie ; 178: 137-147, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623048

RESUMO

Brain functions are known to be mainly modulated by adequate dietary intake. Inadequate intake as can be an excess or significant deficiency affect cognitive processes, behavior, neuroendocrine functions and synaptic plasticity with protective or harmful effects on neuronal physiology. Lipids, in particular, ω-6 and ω-3 long chain polyunsaturated fatty acids (LC-PUFAs) play structural roles and govern the different functions of the brain. Hence, the goal of this study was to characterize the whole brain fatty acid composition (precursors, enzymatic and non-enzymatic oxidation metabolites) of fish model of rainbow trout fed with three experimental plant-based diet containing distinct levels of eicosapentaenoic acid (EPA, 20:5 ω-3) and docosahexaenoic acid (DHA, 22:6 ω-3) (0% for low, 15.7% for medium and 33.4% for high, total fatty acid content) during nine weeks. Trout fed with the diet devoid of DHA and EPA showed reduced brain content of total ω-3 LC-PUFAs, with diminution of EPA and DHA. Selected enzymatic (cyclooxygenases and lipoxygenases) oxidation metabolites of arachidonic acid (AA, 20:4 ω-6) decrease in medium and high ω-3 LC-PUFAs diets. On the contrary, total selected enzymatic oxidation metabolites of DHA and EPA increased in high ω-3 LC-PUFAs diet. Total selected non-enzymatic oxidation metabolites of DHA (not detected for EPA) increased in medium and high ω-3 LC-PUFAs diets. In conclusion, this work revealed for the first time in fish model the presence of some selected enzymatic and non-enzymatic oxidation metabolites in brain and the modulation of brain lipid content by dietary DHA and EPA levels.


Assuntos
Química Encefálica , Encéfalo/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/metabolismo , Ácido Eicosapentaenoico/farmacologia , Oncorhynchus mykiss/metabolismo , Ração Animal , Animais , Encéfalo/efeitos dos fármacos , Gorduras Insaturadas na Dieta/metabolismo , Gorduras Insaturadas na Dieta/farmacologia , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Metabolismo dos Lipídeos , Oncorhynchus mykiss/crescimento & desenvolvimento , Óleos de Plantas/metabolismo , Óleos de Plantas/farmacologia
10.
Front Physiol ; 11: 303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32499714

RESUMO

Sustainable aquaculture production requires a greater reduction in the use of marine-derived ingredients, and one of the most promising solutions today is the augmentation in the proportion of digestible carbohydrates in aquafeed. This challenge is particularly difficult for high trophic level teleost fish as they are considered to be glucose-intolerant (growth delay and persistent postprandial hyperglycemia observed in juveniles fed a diet containing more than 20% of carbohydrates). It was previously suggested that broodstock could potentially use carbohydrates more efficiently than juveniles, probably due to important metabolic changes that occur during gametogenesis. To investigate this hypothesis, 2-year old male and female rainbow trout (Oncorhynchus mykiss) were either fed a diet containing no carbohydrates (NC) or a 35%-carbohydrate diet (HC) for an entire reproductive cycle. Zootechnical parameters as well as the activities of enzymes involved in carbohydrate metabolism were measured in livers and gonads. Fish were then reproduced to investigate the effects of such a diet on reproductive performance. Broodstock consumed the HC diet, and in contrast to what is commonly observed in juveniles, they were able to grow normally and they did not display postprandial hyperglycemia. The modulation of their hepatic metabolism, with an augmentation of the glycogenesis, the pentose phosphate pathway and a possible better regulation of gluconeogenesis, may explain their improved ability to use dietary carbohydrates. Although the HC diet did induce precocious maturation, the reproductive performance of fish was not affected, confirming that broodstock are able to reproduce when fed a low-protein high-carbohydrate diet. In conclusion, this exploratory work has shown that broodstock are able to use a diet containing digestible carbohydrates as high as 35% and can then grow and reproduce normally over an entire reproductive cycle for females and at least at the beginning of the cycle for males. These results are highly promising and suggest that dietary carbohydrates can at least partially replace proteins in broodstock aquafeed.

11.
Fish Shellfish Immunol ; 103: 409-420, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32473359

RESUMO

Characterization and modulation of cerebral function by ω-3 long chain polyunsaturated fatty acids (ω-3 LC-PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) enrichment in plant based-diet were studied in rainbow trout (Oncorhynchus mikyss). We hypothesized that ω-3 LC-PUFAs are involved in the regulation of cerebral function in fish. During nine weeks, we examined the growth performance of rainbow trout for three experimental plant based-diets containing distinct levels of EPA and DHA. Using RT-qPCR, we assessed mRNA genes related to feeding behavior regulated by the central nervous system of humans, rodents and fish. These include markers of neuropeptides, indicators of cellular specification, animal stress, oxidant status, cytokines and genes regulating animal behaviour. ω-3 LC-PUFAs enrichment decreased daily food intake and induced a simultaneous mRNA expression increase in orexigenic transcript npy peptide and a decrease in anorexigen transcript pomcA peptide in the hypothalamus. Overall transcript genes related to proinflammatory cytokines, inflammation, antioxidant status, cortisol pathway, serotoninergic pathways and dopaminergic pathways were down-regulated in the juveniles fed the high ω-3 LC-PUFAs diet. However, the mRNA expression of transcripts related to cell specification were down regulated, namely tmem119 markers of microglial cell in forebrain and midbrain, gfap markers of astrocyte in the midbrain, and rbfox3 markers of neurons in the midbrain and hindbrain in juveniles fed high ω-3 experimental diet. In conclusion, this study revealed that a diet rich in ω-3 LC-PUFAs affected a relatively high proportion of the brain function in juvenile rainbow trout through mechanisms comparable to those characterized previously in mammals.


Assuntos
Cognição/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/análise , Ácido Eicosapentaenoico/análise , Ácidos Graxos Ômega-3/metabolismo , Oncorhynchus mykiss/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Ácidos Graxos Ômega-3/administração & dosagem , Feminino , Distribuição Aleatória
12.
PLoS One ; 15(2): e0223813, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32109243

RESUMO

Cholesterol metabolism is greatly affected in fish fed plant-based diet. The regulation of cholesterol metabolism is mediated by both transcriptional factors such as sterol regulatory element-binding proteins (SREBPs) and liver X receptors (LXRs), and posttranscriptional factors including miRNAs. In mammals, SREBP-2 and LXRα are involved in the transcriptional regulation of cholesterol synthesis and elimination, respectively. In mammals, miR-33a is reported to directly target genes involved in cholesterol catabolism. The present study aims to investigate the regulation of cholesterol metabolism by SREBP-2 and LXRα and miR-33a in rainbow trout using in vivo and in vitro approaches. In vivo, juvenile rainbow trout of ~72 g initial body weight were fed a total plant-based diet (V) or a marine diet (M) containing fishmeal and fish oil. In vitro, primary cell culture hepatocytes were stimulated by graded concentrations of 25-hydroxycholesterol (25-HC). The hepatic expression of cholesterol synthetic genes, srebp-2 and miR-33a as well as miR-33a level in plasma were increased in fish fed the plant-based diet, reversely, their expression in hepatocytes were inhibited with the increasing 25-HC in vitro. However, lxrα was not affected neither in vivo nor in vitro. Our results suggest that SREBP-2 and miR-33a synergistically enhance the expression of cholesterol synthetic genes but do not support the involvement of LXRα in the regulation of cholesterol elimination. As plasma level of miR-33a appears as potential indicator of cholesterol synthetic capacities, this study also highlights circulating miRNAs as promising noninvasive biomarker in aquaculture.


Assuntos
Colesterol/metabolismo , Receptores X do Fígado/fisiologia , MicroRNAs/fisiologia , Oncorhynchus mykiss/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Aquicultura/métodos , Células Cultivadas , Hepatócitos/metabolismo , Metabolismo dos Lipídeos
13.
Physiol Behav ; 213: 112692, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31647989

RESUMO

The control of feed intake in fish in aquaculture requires the development of new techniques to improve diet composition, feed conversion efficiency and growth. The aim must be sustainability and an effective use of resources. The effect of replacing traditional aqua-feed ingredients (fishmeal and fish oil) by a 100% plant-based diet is known to drastically decrease fish performance (survival and growth). The present study examined the feed preference of rainbow trout Oncorhynchus mykiss for three diets containing distinct levels of omega-3 long chain polyunsaturated fatty acids (ω-3 LCPUFA): eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) (0% for low, 5% for medium and 20% for high, total fatty acid content). Feed preference values for each group (low v. medium ω-3 diets, medium v. high ω-3 diets and low v. high ω-3 diets) were observed using two self-feeders positioned at opposite sides of the tank. The hypothesis was that the decrease of fish growth and survival rate of fish fed with 100% plant-based diet could be explained by the absence of ω-3 LCPUFA relating to decrease of food intake. This could explain the tasting role of ω-3 LCPUFA in the feeding behavior of rainbow trout (which reflects the motivation to consume feed). The results showed that rainbow trout could discriminate between the diets containing different level of ω-3 LCPUFA even if unable to differentiate between level of 5% (no preference observed in low v. medium ω-3 diets). Overall they had a preference for diet high in ω-3 LCPUFA: 59.5% preference for high ω-3 diet in high v. low ω-3 diets, and 75.6% preference for high ω-3 diet in medium v. high ω-3 diets respectively. This preference was repeated after 21 days and for a further 21 days when the feeds were exchanged between the two self- feeders in each tank: 63.3% preference for high ω-3 diet in high v. low ω-3 diets, and 69,5% preference for high ω-3 diet in medium v. high ω-3 diets respectively. The tests also indicated a difference in the extent of food waste of each of the three diets revealed by uneaten pellets after feed demands. During two periods of test, high ω-3 diet was the most appreciated, the least wasted and the most eaten (all choice groups) whereas the most uneaten feed remained the least appreciated diet in three choices diets (low ω-3 diet in low v. medium ω-3 diets, medium in medium v. high ω-3 diets and low in low v. high ω-3). In conclusion, this study highlighted the influence of ω-3 LCPUFA in the feeding behavior of juvenile rainbow trout, levels of ω-3 LCPUFA drove dietary choices in the fish.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Preferências Alimentares , Oncorhynchus mykiss , Animais , Dieta , Discriminação Psicológica
14.
Fish Physiol Biochem ; 45(2): 681-695, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30367427

RESUMO

For an increased incorporation of plant ingredients in aquafeeds at the expense of fish meal (FM) and fish oil (FO), more knowledge is needed on the effects at the intestine level of dietary vegetable oils (VO) and carbohydrates (CH), and of possible interactions. For that purpose, in this study, the activities of digestive pancreatic enzymes (amylase, lipase, total alkaline proteases), gut microbiota, and histomorphology were assessed in gilthead sea bream (IBW 71.0 ± 1.5 g) fed four diets differing in lipid source (FO or a blend of VO) and carbohydrate content (0% or 20% gelatinized starch) for 81 days. No major changes in digestive enzyme activities were noticed in fish fed the experimental diets. Dietary VO, but not CH content, modified intestinal microbial profile, by increasing the similarity of bacterial communities. Especially when combined with CH, dietary VO promoted abnormal enterocyte architecture. Liver histology was also accessed, and an increased cytoplasmic vacuolization of hepatocytes was related with dietary CH inclusion, being only significantly different in fish fed FO-based diets. Overall, nutritional interactions between dietary lipid source and carbohydrate content were not observed on digestive enzyme activities and microbial profile. However, the intestine histological modifications observed in fish fed the VOCH+ diet suggest a negative interaction between dietary VO and CH. This requires a more in depth assessment in future studies as it can have negative consequences at a functional level.


Assuntos
Carboidratos da Dieta/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Óleos de Plantas/farmacologia , Dourada/crescimento & desenvolvimento , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/genética , Dieta/veterinária , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/farmacologia , Intestinos/enzimologia , Óleos de Plantas/administração & dosagem , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Distribuição Aleatória
15.
PLoS One ; 13(11): e0206727, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30395627

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs which are known to posttranscriptionally regulate the expression of most genes in both animals and plants. Meanwhile, studies have shown that numbers of miRNAs are present in body fluids including the plasma. Despite the mode of action of these circulating miRNAs still remains unknown, they have been found to be promising biomarkers for disease diagnosis, prognosis and response to treatment. In order to evaluate the potential of miRNAs as non-invasive biomarkers in aquaculture, a time-course experiment was implemented to investigate the postprandial regulation of miRNAs levels in liver and plasma as well as the hepatic expression of genes involved in cholesterol metabolism. We showed that miR-1, miR-33a, miR-122, miR-128 and miR-223 were expressed in the liver of rainbow trout and present at detectable level in the plasma. We also demonstrated that hepatic expression of miR-1, miR-122 and miR-128 were regulated by feed intake and reached their highest levels 12 hours after the meal. Interestingly, we observed that circulating levels of miR-128 and miR-223 are subjected to postprandial regulations similar to that observed in their hepatic counterparts. Statistical correlations were observed between liver and plasma for miR-128 and miR-223 and between hepatic and circulating miR-122, miR-128 and miR-223 and expression of genes related to cholesterol synthesis and efflux or glucose phosphorylation. These results demonstrated that circulating miR-122, miR-128 and miR-223 are potential biomarkers of cholesterol metabolism in rainbow trout.


Assuntos
Colesterol/genética , Colesterol/metabolismo , MicroRNAs/sangue , MicroRNAs/genética , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/metabolismo , Animais , Glicemia/metabolismo , Colesterol/sangue , Perfilação da Expressão Gênica , Metabolismo dos Lipídeos/genética , Lipogênese/genética , Fígado/metabolismo , MicroRNAs/metabolismo , Oncorhynchus mykiss/sangue , Período Pós-Prandial/genética , Triglicerídeos/sangue
16.
Front Physiol ; 9: 1579, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30483148

RESUMO

Rainbow trout (Oncorhynchus mykiss) is recognized as a typical "glucose-intolerant" fish, and the limits of dietary carbohydrate utilization have been investigated for many years. In this study, the objective was to test the molecular effects of dietary carbohydrates on intermediary metabolism in two major metabolic tissues, liver and muscle. Another objective was also to study if the response to carbohydrate intake depended on the genetic background. We fed two isogenic lines of rainbow trout (named A22h and N38h) with high carbohydrate diet (carbohydrate, 22.9%) or low carbohydrate diet (carbohydrate, 3.6%) for 12 weeks. Carbohydrates were associated with higher feed utilization owned by the well-known protein-sparing effect, with better fish growth performance. However, atypical regulation of glycolysis and gluconeogenesis in liver and absence of hk and glut4 induction in muscle, were also observed. Regarding the effects of carbohydrates on other metabolism, we observed an increased, at a molecular level, of hepatic cholesterol biosynthesis, fatty acid oxidation and mitochondrial energy metabolism. Genetic variability (revealed by the differences between the two isogenic lines) was observed for some metabolic genes especially for those involved in the EPA and DHA biosynthetic capacity. Finally, our study demonstrates that dietary carbohydrate not only affect glucose metabolism but also strongly impact the lipid and energy metabolism in liver and muscle of trout.

17.
Fish Physiol Biochem ; 44(3): 911-918, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29460183

RESUMO

The aim of the present study was to assess the impact of an acute handling stress on hepatic oxidative status of European sea bass (Dicentrarchus labrax) juveniles fed diets differing in lipid so urce and carbohydrate content. For that purpose, four diets were formulated with fish oil (FO) and vegetable oils (VO) as lipid source and with 20 or 0% gelatinized starch as carbohydrate source. Triplicate groups of fish with 74 g were fed each diet during 13 weeks and then subjected to an acute handling stress. Stress exposure decreased hematocrit (Ht) and hemoglobin (Hb) levels. Independent of dietary treatment, stress exposure increased hepatic lipid peroxidation (LPO). Stressed fish exhibited lower glucose 6-phosphate dehydrogenase (G6PD), catalase (CAT), and superoxide dismutase (SOD) activities, independent of previous nutritional history. In the VO groups, stress exposure increased glutathione peroxidase (GPX) activity. Diet composition had no effect on Ht and Hb levels. In contrast, dietary carbohydrate decreased hepatic LPO and CAT activity and increased glutathione reductase (GR) and G6PD activities. Dietary lipids had no effect on LPO. Fish fed the VO diets exhibited higher G6PD activity than fish fed the FO diets. In conclusion, dietary carbohydrates contributed to the reduction of oxidative stress in fish. However, under the imposed handling stress conditions, liver enzymatic antioxidant mechanisms were not enhanced, which may explain the overall increased oxidative stress.


Assuntos
Bass/metabolismo , Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Óleos de Peixe/farmacologia , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Óleos de Plantas/farmacologia , Animais , Catalase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Superóxido Dismutase/metabolismo
18.
PLoS One ; 13(1): e0190730, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29364933

RESUMO

The effects of replacing fishmeal and fish oil with a plant-based diet were studied in juvenile (10g) and ongrowing (250-350g) rainbow trout from first-feeding. Feed-related differences in the intestinal and hepatic transcriptome were examined in juveniles after 7 months of feeding at 7°C. Based on microarray results obtained for juveniles, the expression of selected genes related to lipid, cholesterol and energy metabolisms, was assessed by RT-qPCR in ongrowing trout after 6 additional months of feeding at 17°C. Plasma glucose and cholesterol, lipid content and fatty acid profile of whole body were analyzed at both stages. After 7 months at 7°C, all juveniles reached the same body weight (10g), while at 13 months ongrowing fish fed the totally plant-based diet exhibited lower body weight (234 vs 330-337g). Body lipid content was higher in juveniles fed the totally plant-based diet (13.2 vs 9.4-9.9%), and plasma cholesterol was about 2-times lower in trout fed the plant-based diets at both stages. Fatty acid profile mirrored that of the respective diet, with low proportions of long-chain n-3 polyunsaturated fatty acids in fish fed plant-based diets. Genes involved in protein catabolism, carbohydrate metabolism and trafficking were down-regulated in the intestines of juveniles fed the plant-based diets. This was not true for ongrowing fish. Genes involved in lipid and cholesterol metabolisms were up-regulated in the livers of fish fed plant-based diets for both stages. In this study, feeding trout a totally plant-based diet from first-feeding affect a relatively low proportion of metabolism-related genes. In the longer term, when fish were reared at a higher temperature, only some of these changes were maintained (i.e. up-regulation of lipid/cholesterol metabolism). Although the plant-based diets tested in this study had no major deficiencies, small adjustments in the feed-formula are needed to further optimize growth performance while sparing marine resources.


Assuntos
Ração Animal , Óleos de Peixe/administração & dosagem , Mucosa Intestinal/metabolismo , Fígado/metabolismo , Oncorhynchus mykiss/metabolismo , Animais , Colesterol/sangue , Metabolismo Energético , Expressão Gênica , Metabolismo dos Lipídeos , Análise de Sequência com Séries de Oligonucleotídeos , Oncorhynchus mykiss/genética , Oncorhynchus mykiss/crescimento & desenvolvimento , Reação em Cadeia da Polimerase em Tempo Real , Transcriptoma
19.
Am J Physiol Regul Integr Comp Physiol ; 314(1): R58-R70, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28931545

RESUMO

When compared with fish meal and fish oil, plant ingredients differ not only in their protein content and amino acid and fatty acid profiles but are also devoid of cholesterol, the major component of cell membrane and precursor of several bioactive compounds. Based on these nutritional characteristics, plant-based diets can affect fish physiology and cholesterol metabolism. To investigate the mechanisms underlying cholesterol homeostasis, rainbow trout were fed from 1 g body wt for 6 mo with a totally plant-based diet (V), a marine diet (M), and a marine-restricted diet (MR), with feed intake adjusted to that of the V group. The expression of genes involved in cholesterol synthesis, esterification, excretion, bile acid synthesis, and cholesterol efflux was measured in liver. Results showed that genes involved in cholesterol synthesis were upregulated in trout fed the V diet, whereas expression of genes related to bile acid synthesis ( cyp7a1) and cholesterol elimination ( abcg8) were reduced. Feeding trout the V diet also enhanced the expression of srebp-2 while reducing that of lxrα and miR-223. Overall, these data suggested that rainbow trout coped with the altered nutritional characteristics and absence of dietary cholesterol supply by increasing cholesterol synthesis and limiting cholesterol efflux through molecular mechanisms involving at least srebp-2, lxrα, and miR-223. However, plasma and body cholesterol levels in trout fed the V diet were lower than in fish fed the M diet, raising the question of the role of cholesterol in the negative effect of plant-based diet on growth.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Colesterol/metabolismo , Dieta Vegetariana , Proteínas de Peixes/metabolismo , Metabolismo dos Lipídeos , Oncorhynchus mykiss/metabolismo , Adaptação Fisiológica , Animais , Ácidos e Sais Biliares/metabolismo , Colesterol/sangue , Proteínas de Peixes/genética , Regulação Enzimológica da Expressão Gênica , Homeostase , Metabolismo dos Lipídeos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estado Nutricional , Oncorhynchus mykiss/sangue , Oncorhynchus mykiss/genética
20.
Dev Neurobiol ; 77(1): 26-38, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27273844

RESUMO

In zebrafish brains, populations of continuously proliferating cells are present during an entire life span. Under normal conditions, stem cells give rise to rapidly proliferating progenitors that quickly exit the cell cycle and differentiate. Hence fish are favorable models to study what regulates postembryonic neurogenesis. The aim of this study was to determine if optic tectum (OT) cell proliferation is halted during nutritional deprivation (ND) and whether or not it can be restored with refeeding. We examined the effect of ND on the proliferation of Neuroepithelial/Ependymal Progenitor cell (NeEPC) and transitory-amplifying progenitors (TAPs). Following ND, no PCNA immunostaining was found in OT of starved fish, while positive cell populations of PCNA positive progenitors are found at its periphery in control fish. This indicated that active proliferation stopped. To label retaining progenitor cells, BrdU was applied and a chase-period was accompanied by ND. Positive NeEPCs were detected in the external tectum marginal zone of starved fish suggesting that these progenitors are relatively immune to ND. Moreover in the internal tectum marginal zone labeled retaining cells were observed leaving the possibility that some arrested TAPs were present to readily restart proliferation when nutrition was returned. Our results suggest that neurogenesis was maintained during ND and that a normal proliferative situation was recovered after refeeding. We point to the mTOR pathway as a necessary pathway in progenitors to regulate their mitosis activity. Thus, this study highlights mechanisms involved in neural stem and progenitor cell homeostatic maintenance in an adverse situation. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 26-38, 2017.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal/fisiologia , Proliferação de Células/fisiologia , Neurogênese/fisiologia , Inanição , Células-Tronco/fisiologia , Colículos Superiores/fisiologia , Animais , Epêndima/citologia , Epêndima/fisiologia , Modelos Animais , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Células Neuroepiteliais/citologia , Células Neuroepiteliais/fisiologia , Colículos Superiores/citologia , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...