Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Annu Rev Nutr ; 43: 25-54, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37207357

RESUMO

Fatty acid-binding proteins (FABPs) are small lipid-binding proteins abundantly expressed in tissues that are highly active in fatty acid (FA) metabolism. Ten mammalian FABPs have been identified, with tissue-specific expression patterns and highly conserved tertiary structures. FABPs were initially studied as intracellular FA transport proteins. Further investigation has demonstrated their participation in lipid metabolism, both directly and via regulation of gene expression, and in signaling within their cells of expression. There is also evidence that they may be secreted and have functional impact via the circulation. It has also been shown that the FABP ligand binding repertoire extends beyond long-chain FAs and that their functional properties also involve participation in systemic metabolism. This article reviews the present understanding of FABP functions and their apparent roles in disease, particularly metabolic and inflammation-related disorders and cancers.


Assuntos
Proteínas de Ligação a Ácido Graxo , Neoplasias , Humanos , Animais , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Fígado/metabolismo , Mamíferos/metabolismo , Transporte Biológico , Neoplasias/genética
2.
Life Sci ; 301: 120621, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35545133

RESUMO

AIMS: Lung cancer is the leading cause of cancer-related death. Unfortunately, targeted-therapies have been unsuccessful for most patients with lung adenocarcinoma (LUAD). Thus, new early biomarkers and treatment options are a pressing need. Fatty acid binding protein 5 (FABP5) has been associated with various types of cancers. Its contribution to LUAD onset, progression and metabolic reprogramming is, however, not fully understood. In this study we assessed the importance of FABP5 in LUAD and its role in cancer lipid metabolism. MAIN METHODS: By radioactive labeling and metabolite quantification, we studied the function of FABP5 in fatty acid metabolism using genetic/pharmacologic inhibition and overexpression models in LUAD cell lines. Flow cytometry, heterologous transplantation and bioinformatic analysis were used, in combination with other methodologies, to assess the importance of FABP5 for cellular proliferation in vitro and in vivo and in patient survival. KEY FINDINGS: We show that high expression of FABP5 is associated with poor prognosis in patients with LUAD. FABP5 regulates lipid metabolism, diverting fatty acids towards complex lipid synthesis, whereas it does not affect their catabolism in vitro. Moreover, FABP5 is required for de novo fatty acid synthesis and regulates the expression of enzymes involved in the pathway (including FASN and SCD1). Consistently with the changes in lipid metabolism, FABP5 is required for cell cycle progression, migration and in vivo tumor growth. SIGNIFICANCE: Our results suggest that FABP5 is a regulatory hub of lipid metabolism and tumor progression in LUAD, placing it as a new putative therapeutic target for this disease.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Linhagem Celular Tumoral , Proliferação de Células , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Humanos , Lipogênese
3.
Parasitol Res ; 121(4): 1117-1129, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35169885

RESUMO

Infections with parasitic helminths cause severe debilitating and sometimes lethal diseases in humans and domestic animals on a global scale. Unable to synthesize de novo their own fatty acids and sterols, helminth parasites (nematodes, trematodes, cestodes) rely on their hosts for their supply. These organisms produce and secrete a wide range of lipid binding proteins that are, in most cases, structurally different from the ones found in their hosts, placing them as possible novel therapeutic targets. In this sense, a lot of effort has been made towards the structure determination of these proteins, but their precise function is still unknown. In this review, we aim to present the current knowledge on the functions of LBPs present in parasitic helminths as well as novel members of this highly heterogeneous group of proteins.


Assuntos
Helmintos , Nematoides , Parasitos , Trematódeos , Animais , Lipídeos
4.
J Comput Aided Mol Des ; 34(12): 1275-1288, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33067653

RESUMO

Fatty acid binding proteins (FABPs) are small intracellular proteins that reversibly bind fatty acids and other hydrophobic ligands. In cestodes, due to their inability to synthesise fatty acids and cholesterol de novo, FABPs, together with other lipid binding proteins, have been proposed as essential, involved in the trafficking and delivery of such lipophilic metabolites. Pharmacological agents that modify specific parasite FABP function may provide control of lipid signalling pathways, inflammatory responses and metabolic regulation that could be of crucial importance for the parasite development and survival. Echinococcus multilocularis and Echinococcus granulosus are, respectively, the causative agents of alveolar and cystic echinococcosis (or hydatidosis). These diseases are included in the World Health Organization's list of priority neglected tropical diseases. Here, we explore the potential of FABPs from cestodes as drug targets. To this end, we have applied a target repurposing approach to identify novel inhibitors of Echinococcus spp. FABPs. An ensemble of computational models was developed and applied in a virtual screening campaign of DrugBank library. 21 hits belonging to the applicability domain of the ensemble models were identified, and 3 of the hits were assayed against purified E. multilocularis FABP, experimentally confirming the model's predictions. Noteworthy, this is to our best knowledge the first report on isolation and purification of such four FABP, for which initial structural and functional characterization is reported here.


Assuntos
Simulação por Computador , Reposicionamento de Medicamentos/métodos , Equinococose/tratamento farmacológico , Echinococcus multilocularis/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/antagonistas & inibidores , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Animais , Anti-Helmínticos/farmacologia , Equinococose/parasitologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Helminto/antagonistas & inibidores
5.
Parasitol Res ; 119(4): 1401-1408, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32130486

RESUMO

Fatty acid-binding proteins (FABPs) are small intracellular proteins that reversibly bind fatty acids and other hydrophobic ligands. In cestodes, due to their inability to synthesise fatty acids de novo, FABPs have been proposed as essential proteins, and thus, as possible drug targets and/or carriers against these parasites. We performed data mining in Echinococcus multilocularis and Echinococcus granulosus genomes in order to test whether this family of proteins is more complex than previously reported. By exploring the genomes of E. multilocularis and E. granulosus, six genes coding for FABPs were found in each organism. In the case of E. granulosus, all of them have different coding sequences, whereas in E. multilocularis, two of the genes code for the same protein. Remarkably, one of the genes (in both cestodes) encodes a FABP with a C-terminal extension unusual for this family of proteins. The newly described genes present variations in their structure in comparison with previously described FABP genes in Echinococcus spp. The coding sequences for E. multilocularis were validated by cloning and sequencing. Moreover, differential expression patterns of FABPs were observed at different stages of the life cycle of E. multilocularis by exploring transcriptomic data from several sources. In summary, FABP family in cestodes is far more complex than previously thought and includes new members that seem to be only present in flatworms.


Assuntos
Echinococcus granulosus/genética , Echinococcus multilocularis/genética , Proteínas de Ligação a Ácido Graxo/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , DNA de Protozoário/genética , Ácidos Graxos/metabolismo , Genoma de Protozoário/genética , Análise de Sequência , Análise de Sequência de DNA , Transcriptoma/genética
6.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G518-G530, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31905021

RESUMO

Intestinal-fatty acid binding protein (IFABP; FABP2) is a 15-kDa intracellular protein abundantly present in the cytosol of the small intestinal (SI) enterocyte. High-fat (HF) feeding of IFABP-/- mice resulted in reduced weight gain and fat mass relative to wild-type (WT) mice. Here, we examined intestinal properties that may underlie the observed lean phenotype of high fat-fed IFABP-/- mice. No alterations in fecal lipid content were found, suggesting that the IFABP-/- mice are not malabsorbing dietary fat. However, the total excreted fecal mass, normalized to food intake, was increased for the IFABP-/- mice relative to WT mice. Moreover, intestinal transit time was more rapid in the IFABP-/- mice. IFABP-/- mice displayed a shortened average villus length, a thinner muscularis layer, reduced goblet cell density, and reduced Paneth cell abundance. The number of proliferating cells in the crypts of IFABP-/- mice did not differ from that of WT mice, suggesting that the blunt villi phenotype is not due to alterations in proliferation. IFABP-/- mice were observed to have altered expression of genes and proteins related to intestinal structure, while immunohistochemical analyses revealed increased staining for markers of inflammation. Taken together, these studies indicate that the ablation of IFABP, coupled with high-fat feeding, leads to changes in gut motility and morphology, which likely contribute to the relatively leaner phenotype occurring at the whole-body level. Thus, IFABP is likely involved in dietary lipid sensing and signaling, influencing intestinal motility, intestinal structure, and nutrient absorption, thereby impacting systemic energy metabolism.NEW & NOTEWORTHY Intestinal fatty acid binding protein (IFABP) is thought to be essential for the efficient uptake and trafficking of dietary fatty acids. In this study, we demonstrate that high-fat-fed IFABP-/- mice have an increased fecal output and are likely malabsorbing other nutrients in addition to lipid. Furthermore, we observe that the ablation of IFABP leads to marked alterations in intestinal morphology and secretory cell abundance.


Assuntos
Adiposidade , Dieta Hiperlipídica , Proteínas de Ligação a Ácido Graxo/deficiência , Motilidade Gastrointestinal , Mucosa Intestinal/metabolismo , Intestino Delgado/metabolismo , Aumento de Peso , Animais , Morte Celular , Defecação , Metabolismo Energético , Enterócitos/metabolismo , Enterócitos/patologia , Proteínas de Ligação a Ácido Graxo/genética , Fezes/química , Deleção de Genes , Genótipo , Absorção Intestinal , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Intestino Delgado/patologia , Intestino Delgado/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fatores de Tempo
7.
Biosci Rep ; 39(7)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31273060

RESUMO

Intracellular lipid-binding proteins (iLBPs) of the fatty acid-binding protein (FABP) family of animals transport, mainly fatty acids or retinoids, are confined to the cytosol and have highly similar 3D structures. In contrast, nematodes possess fatty acid-binding proteins (nemFABPs) that are secreted into the perivitelline fluid surrounding their developing embryos. We report structures of As-p18, a nemFABP of the large intestinal roundworm Ascaris suum, with ligand bound, determined using X-ray crystallography and nuclear magnetic resonance spectroscopy. In common with other FABPs, As-p18 comprises a ten ß-strand barrel capped by two short α-helices, with the carboxylate head group of oleate tethered in the interior of the protein. However, As-p18 exhibits two distinctive longer loops amongst ß-strands not previously seen in a FABP. One of these is adjacent to the presumed ligand entry portal, so it may help to target the protein for efficient loading or unloading of ligand. The second, larger loop is at the opposite end of the molecule and has no equivalent in any iLBP structure yet determined. As-p18 preferentially binds a single 18-carbon fatty acid ligand in its central cavity but in an orientation that differs from iLBPs. The unusual structural features of nemFABPs may relate to resourcing of developing embryos of nematodes.


Assuntos
Ascaris suum/química , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Helminto/química , Óvulo/química , Animais , Ascaris suum/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Helminto/metabolismo , Ligantes , Óvulo/metabolismo , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína
8.
Cell Cycle ; 18(14): 1646-1659, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31203714

RESUMO

Mitosis has been traditionally considered a metabolically inactive phase. We have previously shown, however, that extensive alterations in lipids occur as the cells traverse mitosis, including increased de novo fatty acid (FA) and phosphatidylcholine (PtdCho) synthesis and decreased lysophospholipid content. Given the diverse structural and functional properties of these lipids, we sought to study their metabolic fate and their importance for cell cycle completion. Here we show that FA and PtdCho synthesized at the mitotic exit are destined to the nuclear envelope. Importantly, FA and PtdCho synthesis, but not the decrease in lysophospholipid content, are necessary for cell cycle completion beyond G2/M. Moreover, the presence of alternative pathways for PtdCho synthesis renders the cells less sensitive to its inhibition than to the impairment of FA synthesis. FA synthesis, thus, represents a cell cycle-related metabolic vulnerability that could be exploited for combined chemotherapy. We explored the combination of fatty acid synthase (FASN) inhibition with agents that act at different phases of the cell cycle. Our results show that the effect of FASN inhibition may be enhanced under some drug combinations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ácido Graxo Sintases/antagonistas & inibidores , Ácidos Graxos/biossíntese , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Mitose/efeitos dos fármacos , Membrana Nuclear/metabolismo , Fosfatidilcolinas/biossíntese , 4-Butirolactona/análogos & derivados , 4-Butirolactona/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Etoposídeo/farmacologia , Ácido Graxo Sintases/metabolismo , Células HeLa , Humanos , Lipogênese/fisiologia , Lisofosfolipídeos/biossíntese , Lisofosfolipídeos/química , Mitose/fisiologia , Membrana Nuclear/efeitos dos fármacos , Membrana Nuclear/enzimologia
9.
J Biomol Struct Dyn ; 36(4): 861-877, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28298157

RESUMO

Based on the analysis of the mechanism of ligand transfer to membranes employing in vitro methods, Fatty Acid Binding Protein (FABP) family has been divided in two subgroups: collisional and diffusional FABPs. Although the collisional mechanism has been well characterized employing in vitro methods, the structural features responsible for the difference between collisional and diffusional mechanisms remain uncertain. In this work, we have identified the amino acids putatively responsible for the interaction with membranes of both, collisional and diffusional, subgroups of FABPs. Moreover, we show how specific changes in FABPs' structure could change the mechanism of interaction with membranes. We have computed protein-membrane interaction energies for members of each subgroup of the family, and performed Molecular Dynamics simulations that have shown different configurations for the initial interaction between FABPs and membranes. In order to generalize our hypothesis, we extended the electrostatic and bioinformatics analysis over FABPs of different mammalian genus. Also, our methodological approach could be used for other systems involving protein-membrane interactions.


Assuntos
Membrana Celular/química , Proteínas de Ligação a Ácido Graxo/química , Ácidos Graxos/química , Proteínas de Membrana/química , Aminoácidos/química , Biologia Computacional , Ligantes , Simulação de Dinâmica Molecular , Ligação Proteica
10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(12): 1587-1594, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28919479

RESUMO

Fatty Acid-Binding Proteins (FABPs) are abundant intracellular proteins that bind long chain fatty acids (FA) and have been related with inmunometabolic diseases. Intestinal epithelial cells express two isoforms of FABPs: liver FABP (LFABP or FABP1) and intestinal FABP (IFABP or FABP2). They are thought to be associated with intracellular dietary lipid transport and trafficking towards diverse cell fates. But still their specific functions are not well understood. To study FABP1's functions, we generated an FABP1 knockdown model in Caco-2 cell line by stable antisense cDNA transfection (FABP1as). In these cells FABP1 expression was reduced up to 87%. No compensatory increase in FABP2 was observed, strengthening the idea of differential functions of both isoforms. In differentiated FABP1as cells, apical administration of oleate showed a decrease in its initial uptake rate and in long term incorporation compared with control cells. FABP1 depletion also reduced basolateral oleate secretion. The secreted oleate distribution showed an increase in FA/triacylglyceride ratio compared to control cells, probably due to FABP1's role in chylomicron assembly. Interestingly, FABP1as cells exhibited a dramatic decrease in proliferation rate. A reduction in oleate uptake as well as a decrease in its incorporation into the phospholipid fraction was observed in proliferating cells. Overall, our studies indicate that FABP1 is essential for proper lipid metabolism in differentiated enterocytes, particularly concerning fatty acids uptake and its basolateral secretion. Moreover, we show that FABP1 is required for enterocyte proliferation, suggesting that it may contribute to intestinal homeostasis.


Assuntos
Proliferação de Células/fisiologia , Enterócitos/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Células CACO-2 , Proteínas de Ligação a Ácido Graxo/genética , Ácidos Graxos/genética , Humanos
11.
Parasit Vectors ; 10(1): 446, 2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28954629

RESUMO

BACKGROUND: The giant kidney worm, Dioctophyme renale, is a debilitating and potentially lethal parasite that inhabits and destroys, typically host's right kidney, and may also be found in ectopic sites. It is circumglobally distributed, mainly in dogs, and is increasingly regarded as a threat to other domestic animals and humans. There is little information on the parasite's true incidence, or immune responses to it, and none on its biochemistry and molecular biology. RESULTS: We characterised the soluble proteins of body wall, intestine, gonads and pseudocelomic fluid (PCF) of adult parasites. Two proteins, P17 and P44, dominate the PCF of both male and females. P17 is of 16,622 Da by mass spectrometry, and accounts for the intense red colour of the adult parasites. It may function to carry or scavenge oxygen and be related to the 'nemoglobins' found in other nematode clades. P44 is of 44,460 Da and was found to associate with fatty acids by thin layer chromatography. Using environment-sensitive fluorescent lipid probes, P44 proved to be a hydrophobic ligand-binding protein with a binding site that is highly apolar, and competitive displacement experiments showed that P44 binds fatty acids. It may therefore have a role in distributing lipids within the parasites and, if also secreted, might influence local inflammatory and tissue responses. N-terminal and internal peptide amino-acid sequences of P44 indicate a relationship with a cysteine- and histidine-rich protein of unknown function from Trichinella spiralis. CONCLUSIONS: The dominant proteins of D. renale PCF are, like those of large ascaridids, likely to be involved in lipid and oxygen handling, although there is evidence of strong divergence between the two groups.


Assuntos
Dioctophymatoidea/metabolismo , Infecções por Enoplida/veterinária , Proteínas de Helminto/química , Sequência de Aminoácidos , Animais , Cromatografia em Camada Fina , Dioctophymatoidea/química , Dioctophymatoidea/genética , Doenças do Cão/parasitologia , Cães , Infecções por Enoplida/parasitologia , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Rim , Masculino , Espectrometria de Massas , Dados de Sequência Molecular , Peso Molecular
12.
Parasit Vectors ; 9: 69, 2016 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-26846700

RESUMO

BACKGROUND: Antigen B (EgAgB) is an abundant lipoprotein released by the larva of the cestode Echinococcus granulosus into the host tissues. Its protein moiety belongs to the cestode-specific family known as hydrophobic ligand binding protein (HLBP), and is encoded by five gene subfamilies (EgAgB8/1-EgAgB8/5). The functions of EgAgB in parasite biology remain unclear. It may play a role in the parasite's lipid metabolism since it carries host lipids that E. granulosus is unable to synthesise. On the other hand, there is evidence supporting immuno-modulating activities in EgAgB, particularly on innate immune cells. Both hypothetical functions might involve EgAgB interactions with monocytes and macrophages, which have not been formally analysed yet. METHODS: EgAgB binding to monocytes and macrophages was studied by flow cytometry using inflammation-recruited peritoneal cells and the THP-1 cell line. Involvement of the protein and phospholipid moieties in EgAgB binding to cells was analysed employing lipid-free recombinant EgAgB subunits and phospholipase D treated-EgAgB (lacking the polar head of phospholipids). Competition binding assays with plasma lipoproteins and ligands for lipoprotein receptors were performed to gain information about the putative EgAgB receptor(s) in these cells. Arginase-I induction and PMA/LPS-triggered IL-1ß, TNF-α and IL-10 secretion were examined to investigate the outcome of EgAgB binding on macrophage response. RESULTS: Monocytes and macrophages bound native EgAgB specifically; this binding was also found with lipid-free rEgAgB8/1 and rEgAgB8/3, but not rEgAgB8/2 subunits. EgAgB phospholipase D-treatment, but not the competition with phospholipid vesicles, caused a strong inhibition of EgAgB binding activity, suggesting an indirect contribution of phospholipids to EgAgB-cell interaction. Furthermore, competition binding assays indicated that this interaction may involve receptors with affinity for plasma lipoproteins. At functional level, the exposure of macrophages to EgAgB induced a very modest arginase-I response and inhibited PMA/LPS-mediated IL-1ß and TNF-α secretion in an IL-10-independent manner. CONCLUSION: EgAgB and, particularly its predominant EgAgB8/1 apolipoprotein, are potential ligands for monocyte and macrophage receptors. These receptors may also be involved in plasma lipoprotein recognition and induce an anti-inflammatory phenotype in macrophages upon recognition of EgAgB.


Assuntos
Echinococcus granulosus/imunologia , Fatores Imunológicos/metabolismo , Inflamação/patologia , Lipoproteínas/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Animais , Células Cultivadas , Citometria de Fluxo , Humanos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Fosfolipídeos/metabolismo , Ligação Proteica
13.
Mediators Inflamm ; 2015: 738563, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26346822

RESUMO

Celiac disease (CD) is an immune-mediated enteropathy that develops in genetically susceptible individuals following exposure to dietary gluten. Severe changes at the intestinal mucosa observed in untreated CD patients are linked to changes in the level and in the pattern of expression of different genes. Fully differentiated epithelial cells express two isoforms of fatty acid binding proteins (FABPs): intestinal and liver, IFABP and LFABP, respectively. These proteins bind and transport long chain fatty acids and also have other important biological roles in signaling pathways, particularly those related to PPARγ and inflammatory processes. Herein, we analyze the serum levels of IFABP and characterize the expression of both FABPs at protein and mRNA level in small intestinal mucosa in severe enteropathy and normal tissue. As a result, we observed higher levels of circulating IFABP in untreated CD patients compared with controls and patients on gluten-free diet. In duodenal mucosa a differential FABPs expression pattern was observed with a reduction in mRNA levels compared to controls explained by the epithelium loss in severe enteropathy. In conclusion, we report changes in FABPs' expression pattern in severe enteropathy. Consequently, there might be alterations in lipid metabolism and the inflammatory process in the small intestinal mucosa.


Assuntos
Doença Celíaca/sangue , Proteínas de Ligação a Ácido Graxo/sangue , Duodeno/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Humanos , Intestino Delgado/metabolismo , PPAR gama/metabolismo , RNA Mensageiro/genética
14.
Biochem J ; 471(3): 403-14, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26318523

RESUMO

Fatty acid and retinol-binding proteins (FARs) comprise a family of unusual α-helix rich lipid-binding proteins found exclusively in nematodes. They are secreted into host tissues by parasites of plants, animals and humans. The structure of a FAR protein from the free-living nematode Caenorhabditis elegans is available, but this protein [C. elegans FAR-7 (Ce-FAR-7)] is from a subfamily of FARs that does not appear to be important at the host/parasite interface. We have therefore examined [Necator americanus FAR-1 (Na-FAR-1)] from the blood-feeding intestinal parasite of humans, N. americanus. The 3D structure of Na-FAR-1 in its ligand-free and ligand-bound forms, determined by NMR (nuclear magnetic resonance) spectroscopy and X-ray crystallography respectively, reveals an α-helical fold similar to Ce-FAR-7, but Na-FAR-1 possesses a larger and more complex internal ligand-binding cavity and an additional C-terminal α-helix. Titration of apo-Na-FAR-1 with oleic acid, analysed by NMR chemical shift perturbation, reveals that at least four distinct protein-ligand complexes can be formed. Na-FAR-1 and possibly other FARs may have a wider repertoire for hydrophobic ligand binding, as confirmed in the present study by our finding that a range of neutral and polar lipids co-purify with the bacterially expressed recombinant protein. Finally, we show by immunohistochemistry that Na-FAR-1 is present in adult worms with a tissue distribution indicative of possible roles in nutrient acquisition by the parasite and in reproduction in the male.


Assuntos
Interações Hospedeiro-Parasita , Necator americanus/metabolismo , Necatoríase/metabolismo , Proteínas de Ligação ao Retinol/metabolismo , Animais , Sítios de Ligação , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/patogenicidade , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ligantes , Necator americanus/química , Necator americanus/patogenicidade , Necatoríase/parasitologia , Reprodução , Proteínas de Ligação ao Retinol/química
15.
PLoS Negl Trop Dis ; 9(3): e0003552, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25768648

RESUMO

BACKGROUND: The hydatid disease parasite Echinococcus granulosus has a restricted lipid metabolism, and needs to harvest essential lipids from the host. Antigen B (EgAgB), an abundant lipoprotein of the larval stage (hydatid cyst), is thought to be important in lipid storage and transport. It contains a wide variety of lipid classes, from highly hydrophobic compounds to phospholipids. Its protein component belongs to the cestode-specific Hydrophobic Ligand Binding Protein family, which includes five 8-kDa isoforms encoded by a multigene family (EgAgB1-EgAgB5). How lipid and protein components are assembled into EgAgB particles remains unknown. EgAgB apolipoproteins self-associate into large oligomers, but the functional contribution of lipids to oligomerization is uncertain. Furthermore, binding of fatty acids to some EgAgB subunits has been reported, but their ability to bind other lipids and transfer them to acceptor membranes has not been studied. METHODOLOGY/PRINCIPAL FINDINGS: Lipid-free EgAgB subunits obtained by reverse-phase HPLC were used to analyse their oligomerization, ligand binding and membrane interaction properties. Size exclusion chromatography and cross-linking experiments showed that EgAgB8/2 and EgAgB8/3 can self-associate, suggesting that lipids are not required for oligomerization. Furthermore, using fluorescent probes, both subunits were found to bind fatty acids, but not cholesterol analogues. Analysis of fatty acid transfer to phospholipid vesicles demonstrated that EgAgB8/2 and EgAgB8/3 are potentially capable of transferring fatty acids to membranes, and that the efficiency of transfer is dependent on the surface charge of the vesicles. CONCLUSIONS/SIGNIFICANCE: We show that EgAgB apolipoproteins can oligomerize in the absence of lipids, and can bind and transfer fatty acids to phospholipid membranes. Since imported fatty acids are essential for Echinococcus granulosus, these findings provide a mechanism whereby EgAgB could engage in lipid acquisition and/or transport between parasite tissues. These results may therefore indicate vulnerabilities open to targeting by new types of drugs for hydatidosis therapy.


Assuntos
Lipoproteínas/química , Sequência de Aminoácidos , Animais , Equinococose/parasitologia , Ácidos Graxos/metabolismo , Humanos , Lipídeos , Lipoproteínas/metabolismo , Membranas/metabolismo , Dados de Sequência Molecular , Fosfolipídeos/metabolismo , Polimerização , Subunidades Proteicas
16.
Artigo em Inglês | MEDLINE | ID: mdl-25282399

RESUMO

In this review paper we aim at presenting the current knowledge on structural aspects of soluble lipid binding proteins (LBPs) found in parasitic helminths and to discuss their potential role as novel drug targets. Helminth parasites produce and secrete a great variety of LBPs that may participate in the acquisition of nutrients from their host, such as fatty acids and cholesterol. It is also postulated that LBPs might interfere in the regulation of the host׳s immune response by sequestering lipidic intermediates or delivering bioactive lipids. A detailed comprehension of the structure of these proteins, as well as their interactions with ligands and membranes, is important to understand host-parasite relationships that they may mediate. This information could also contribute to determining the role that these proteins may play in the biology of parasitic helminths and how they modulate the immune systems of their hosts, and also towards the development of new therapeutics and prevention of the diseases caused by these highly pathogenic parasites.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Helmintos/fisiologia , Animais , Proteínas de Ligação a Ácido Graxo/química , Helmintíase/prevenção & controle , Helmintos/parasitologia , Interações Hospedeiro-Parasita , Humanos , Modelos Moleculares
17.
Artigo em Inglês | MEDLINE | ID: mdl-25451555

RESUMO

Lipids are mainly solubilized by various families of lipid binding proteins which participate in their transport between tissues as well as cell compartments. Among these families, Hydrophobic Ligand Binding Proteins (HLBPs) deserve special consideration since they comprise intracellular and extracellular members, are able to bind a variety of fatty acids, retinoids and some sterols, and are present exclusively in cestodes. Since these parasites have lost catabolic and biosynthetic pathways for fatty acids and cholesterol, HLBPs are likely relevant for lipid uptake and transportation between parasite and host cells. Echinococcus granulosus antigen B (EgAgB) is a lipoprotein belonging to the HLBP family, which is very abundant in the larval stage of this parasite. Herein, we review the literature on EgAgB composition, structural organization and biological properties, and propose an integrated scenario in which this parasite HLBP contributes to adaptation to mammalian hosts by meeting both metabolic and immunomodulatory parasite demands.


Assuntos
Echinococcus granulosus/fisiologia , Interações Hospedeiro-Parasita , Lipoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Equinococose/parasitologia , Echinococcus granulosus/crescimento & desenvolvimento , Humanos , Lipoproteínas/química , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência
18.
Biochim Biophys Acta ; 1841(12): 1733-40, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25311169

RESUMO

Intestinal fatty acid binding protein (IFABP) is an intracellular lipid binding protein whose specific functions within the cell are still uncertain. An abbreviated version of IFABP encompassing residues 29-126, dubbed Δ98Δ is a stable product of limited proteolysis with clostripain of holo-IFABP. Cumulative evidence shows that Δ98Δ adopts a stable, monomeric and functional fold, with compact core and loose periphery. In agreement with previous results, this abridged variant indicates that the helical domain is-not necessary to preserve the general topology of IFABP's ß-barrel and that the helix-turn-helix motif is a fundamental element of the portal region involved in ligand binding and protein-membrane interactions. Results presented here suggest that Δ98Δ binds fatty acids with affinities lower than IFABP but higher than those shown by previous helix-less variants, shows a 'diffusional' fatty acid transfer mechanism and it interacts with artificial membranes. This work highlights the importance of the ß-barrel of IFABP for its specific functions.


Assuntos
Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Ácidos Graxos/metabolismo , Acrilamida/metabolismo , Animais , Membrana Celular/metabolismo , Centrifugação , Fosfolipídeos/metabolismo , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Secundária de Proteína , Ratos , Espectrometria de Fluorescência , Sacarose/farmacologia , Térbio/metabolismo
19.
Biochim Biophys Acta ; 1841(1): 141-50, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24148314

RESUMO

Intestinal fatty acid-binding protein (IFABP) is highly expressed in the intestinal epithelium and it belongs to the family of soluble lipid binding proteins. These proteins are thought to participate in most aspects of the biology of lipids, regulating its availability for specific metabolic pathways, targeting and vectorial trafficking of lipids to specific subcellular compartments. The present study is based on the ability of IFABP to interact with phospholipid membranes, and we characterized its immersion into the bilayer's hydrophobic central region occupied by the acyl-chains. We constructed a series of Trp-mutants of IFABP to selectively probe the interaction of different regions of the protein, particularly the elements forming the portal domain that is proposed to regulate the exit and entry of ligands to/from the binding cavity. We employed several fluorescent techniques based on selective quenching induced by soluble or membrane confined agents. The results indicate that the portal region of IFABP penetrates deeply into the phospholipid bilayer, especially when CL-containing vesicles are employed. The orientation of the protein and the degree of penetration were highly dependent on the lipid composition, the superficial net charge and the ionic strength of the medium. These results may be relevant to understand the mechanism of ligand transfer and the specificity responsible for the unique functions of each member of the FABP family.


Assuntos
Membrana Celular/química , Proteínas de Ligação a Ácido Graxo/química , Bicamadas Lipídicas/química , Fosfolipídeos/química , Substituição de Aminoácidos , Animais , Membrana Celular/genética , Membrana Celular/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Bicamadas Lipídicas/metabolismo , Mutação de Sentido Incorreto , Fosfolipídeos/genética , Fosfolipídeos/metabolismo , Estrutura Terciária de Proteína , Ratos
20.
Biomol NMR Assign ; 8(1): 33-6, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23225165

RESUMO

As-p18 is produced and secreted by larvae of the parasitic nematode Ascaris suum as they develop within their eggs. The protein is a member of the fatty acid binding protein (FABP) family found in a wide range of eukaryotes, but is distinctive in that it is secreted from the synthesizing cell and has predicted additional structural features not previously seen in other FABPs. As-p18 and similar proteins found only in nematodes have therefore been designated 'nemFABPs'. Sequence-specific (1)H, (13)C and (15)N resonance assignments were established for the 155 amino acid recombinant protein (18.3 kDa) in complex with oleic acid, using a series of three-dimensional triple-resonance heteronuclear NMR experiments. The secondary structure of As-p18 is predicted to be very similar to other FABPs, but the protein has extended loops that have not been observed in other FABPs whose structures have so far been solved.


Assuntos
Ascaris suum/metabolismo , Proteínas de Ligação a Ácido Graxo/química , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Helminto/química , Proteínas de Helminto/metabolismo , Ressonância Magnética Nuclear Biomolecular , Parasitos/metabolismo , Animais , Larva/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...