Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Microorganisms ; 11(3)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985275

RESUMO

The Antarctic Circumpolar Current (ACC) is the major current in the Southern Ocean, isolating the warm stratified subtropical waters from the more homogeneous cold polar waters. The ACC flows from west to east around Antarctica and generates an overturning circulation by fostering deep-cold water upwelling and the formation of new water masses, thus affecting the Earth's heat balance and the global distribution of carbon. The ACC is characterized by several water mass boundaries or fronts, known as the Subtropical Front (STF), Subantarctic Front (SAF), Polar Front (PF), and South Antarctic Circumpolar Current Front (SACCF), identified by typical physical and chemical properties. While the physical characteristics of these fronts have been characterized, there is still poor information regarding the microbial diversity of this area. Here we present the surface water bacterioplankton community structure based on 16S rRNA sequencing from 13 stations sampled in 2017 between New Zealand to the Ross Sea crossing the ACC Fronts. Our results show a distinct succession in the dominant bacterial phylotypes present in the different water masses and suggest a strong role of sea surface temperatures and the availability of Carbon and Nitrogen in controlling community composition. This work represents an important baseline for future studies on the response of Southern Ocean epipelagic microbial communities to climate change.

2.
Sci Rep ; 12(1): 11415, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794144

RESUMO

The krill species Euphausia superba plays a critical role in the food chain of the Antarctic ecosystem. Significant changes in climate conditions observed in the Antarctic Peninsula region in the last decades have already altered the distribution of krill and its reproductive dynamics. A deeper understanding of the adaptation capabilities of this species is urgently needed. The availability of a large body of RNA-seq assays allowed us to extend the current knowledge of the krill transcriptome. Our study covered the entire developmental process providing information of central relevance for ecological studies. Here we identified a series of genes involved in different steps of the krill moulting cycle, in the reproductive process and in sexual maturation in accordance with what was already described in previous works. Furthermore, the new transcriptome highlighted the presence of differentially expressed genes previously unknown, playing important roles in cuticle development as well as in energy storage during the krill life cycle. The discovery of new opsin sequences, specifically rhabdomeric opsins, one onychopsin, and one non-visual arthropsin, expands our knowledge of the krill opsin repertoire. We have collected all these results into the KrillDB2 database, a resource combining the latest annotation of the krill transcriptome with a series of analyses targeting genes relevant to krill physiology. KrillDB2 provides in a single resource a comprehensive catalog of krill genes; an atlas of their expression profiles over all RNA-seq datasets publicly available; a study of differential expression across multiple conditions. Finally, it provides initial indications about the expression of microRNA precursors, whose contribution to krill physiology has never been reported before.


Assuntos
Euphausiacea , Animais , Ecossistema , Euphausiacea/fisiologia , Opsinas/metabolismo , Alimentos Marinhos , Transcriptoma
3.
Comput Struct Biotechnol J ; 19: 4142-4155, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527188

RESUMO

Non-coding RNAs represent the largest part of transcribed mammalian genomes and prevalently exert regulatory functions. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) can modulate the activity of each other. Skeletal muscle is the most abundant tissue in mammals. It is composed of different cell types with myofibers that represent the smallest complete contractile system. Considering that lncRNAs and miRNAs are more cell type-specific than coding RNAs, to understand their function it is imperative to evaluate their expression and action within single myofibers. In this database, we collected gene expression data for coding and non-coding genes in single myofibers and used them to produce interaction networks based on expression correlations. Since biological pathways are more informative than networks based on gene expression correlation, to understand how altered genes participate in the studied phenotype, we integrated KEGG pathways with miRNAs and lncRNAs. The database also integrates single nucleus gene expression data on skeletal muscle in different patho-physiological conditions. We demonstrated that these networks can serve as a framework from which to dissect new miRNA and lncRNA functions to experimentally validate. Some interactions included in the database have been previously experimentally validated using high throughput methods. These can be the basis for further functional studies. Using database information, we demonstrate the involvement of miR-149, -214 and let-7e in mitochondria shaping; the ability of the lncRNA Pvt1 to mitigate the action of miR-27a via sponging; and the regulatory activity of miR-214 on Sox6 and Slc16a3. The MyoData is available at https://myodata.bio.unipd.it.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...