Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 15(5): 2422-2432, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38329279

RESUMO

The metabolism of (poly)phenols and some host metabolites, including bile acids (BAs) and cholesterol, varies among individuals depending on their gut microbiota. The gut microbial metabolism of ellagitannins (ETs) and ellagic acid (EA) produces urolithins (Uros), yielding three metabotypes with quantitative and qualitative differences based on dissimilar Uro-producing profiles (UM-A, UM-B, and UM-0, i.e., non-producers). Previous animal studies demonstrated that polyphenols impact BAs and cholesterol microbial metabolism, but data on their effects in humans and data regarding the inter-individual variability of these metabolic conversions are scant. We evaluated whether UMs, as distinctive functional gut-microbiome signatures, could determine the potential effect of a pomegranate extract (PE) rich in ET-EA on the metabolism of BAs and cholesterol in mild dyslipidaemic overweight-obese individuals, with possible consequences on host-lipid homeostasis and gut health. At the baseline, UM-B presented the highest levels of faecal total and secondary BAs and coprostanol, suggesting that the lipid absorption capacity and gut cytotoxic risk could be augmented in UM-B. PE intake significantly reduced faecal coprostanol and BA production, especially secondary BAs, and modulated the gut microbiome, reducing the gut cytotoxic risk, especially in UM-B individuals. The lowering of faecal microbial coprostanol and BAs and some BA-metabolising bacteria was quantitatively correlated with Uro concentrations, mainly faecal Uro-A. This suggests that PE consumption could exert cardiovascular and gut protection through Uro-A production as a direct driver of the effects and indirectly by reducing the Coriobacteriaceae family and BA pool, known factors involved in the gut absorption of lipids.


Assuntos
Cumarínicos , Microbioma Gastrointestinal , Punica granatum , Animais , Humanos , Sobrepeso/metabolismo , Colestanol , Ácidos e Sais Biliares , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Colesterol
2.
Gut Microbes ; 16(1): 2298254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38178369

RESUMO

The human gut microbiome plays a significant role in health and disease. The viral component (virome) is predominantly composed of bacteriophages (phages) and has received significantly less attention in comparison to the bacteriome. This knowledge gap is largely due to challenges associated with the isolation and characterization of novel gut phages, and bioinformatic hurdles such as the lack of a universal phage marker gene and the absence of sufficient numbers of homologs in viral databases. Here, we describe the isolation from human feces of a novel lytic phage with siphovirus morphology, φPDS1, infecting Parabacteroides distasonis APCS2/PD, and classified within a newly proposed Sagittacolavirus genus. In silico and biological characterization of this phage is presented in this study. Key to the isolation of φPDS1 was the antibiotic-driven selective enrichment of the bacterial host in a fecal fermenter. Despite producing plaques and lacking genes associated with lysogeny, φPDS1 demonstrates the ability to coexist in liquid culture for multiple days without affecting the abundance of its host. Multiple studies have shown that changes in Parabacteroides distasonis abundance can be linked to various disease states, rendering this novel phage-host pair and their interactions of particular interest.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Microbiota , Humanos , Bacteriófagos/genética , Microbioma Gastrointestinal/genética , Bacteroidetes
3.
Food Funct ; 14(6): 2657-2667, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36866688

RESUMO

Urolithin (Uro) production capacity and, consequently, at least partly, the health effects attributed to ellagitannin and ellagic acid consumption vary among individuals. The reason is that not all individuals have the gut bacterial ecology needed to produce the different Uro metabolites. Three human urolithin metabotypes (UM-A, UM-B, and UM-0) based on dissimilar Uro production profiles have been described in populations worldwide. Recently, the gut bacterial consortia involved in ellagic acid metabolism to yield the urolithin-producing metabotypes (UM-A and UM-B) in vitro have been identified. However, the ability of these bacterial consortia to customize urolithin production to mimic UM-A and UM-B in vivo is still unknown. In the present study, two bacterial consortia were assessed for their capacity to colonize the intestine of rats and convert UM-0 (Uro non-producers) animals into Uro-producers that mimic UM-A and UM-B, respectively. Two consortia of Uro-producing bacteria were orally administered to non-urolithin-producing Wistar rats for 4 weeks. Uro-producing bacterial strains effectively colonized the rats' gut, and the ability to produce Uros was also effectively transferred. Bacterial strains were well tolerated. No changes in other gut bacteria, except Streptococcus reduction, or adverse effects on haematological and biochemical parameters were observed. Besides, two novel qPCR procedures were designed and successfully optimized to detect and quantify Ellagibacter and Enterocloster genera in faecal samples. These results suggest that the bacterial consortia are safe and could be potential probiotics for human trials, which is especially relevant for UM-0 individuals, who cannot produce bioactive Uros.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , Ratos , Ácido Elágico/metabolismo , Ratos Wistar , Fezes/microbiologia , Bactérias/genética , Bactérias/metabolismo , Cumarínicos/metabolismo , Taninos Hidrolisáveis/metabolismo
4.
Int J Mol Sci ; 23(5)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35270004

RESUMO

Dietary (poly)phenols are extensively metabolized, limiting their anticancer activity. Exosomes (EXOs) are extracellular vesicles that could protect polyphenols from metabolism. Our objective was to compare the delivery to breast tissue and anticancer activity in breast cancer cell lines of free curcumin (CUR) and resveratrol (RSV) vs. their encapsulation in milk-derived EXOs (EXO-CUR and EXO-RSV). A kinetic breast tissue disposition was performed in rats. CUR and RSV were analyzed using UPLC-QTOF-MS and GC-MS, respectively. Antiproliferative activity was tested in MCF-7 and MDA-MB-231 breast cancer and MCF-10A non-tumorigenic cells. Cell cycle distribution, apoptosis, caspases activation, and endocytosis pathways were determined. CUR and RSV peaked in the mammary tissue (41 ± 15 and 300 ± 80 nM, respectively) 6 min after intravenous administration of EXO-CUR and EXO-RSV, but not with equivalent free polyphenol concentrations. Nanomolar EXO-CUR or EXO-RSV concentrations, but not free CUR or RSV, exerted a potent antiproliferative effect on cancer cells with no effect on normal cells. Significant (p < 0.05) cell cycle alteration and pro-apoptotic activity (via the mitochondrial pathway) were observed. EXO-CUR and EXO-RSV entered the cells primarily via clathrin-mediated endocytosis, avoiding ATP-binding cassette transporters (ABC). Milk EXOs protected CUR and RSV from metabolism and delivered both polyphenols to the mammary tissue at concentrations compatible with the fast and potent anticancer effects exerted in model cells. Milk EXOs enhanced the bioavailability and anticancer activity of CUR and RSV by acting as Trojan horses that escape from cancer cells' ABC-mediated chemoresistance.


Assuntos
Antineoplásicos , Neoplasias da Mama , Curcumina , Exossomos , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Curcumina/farmacologia , Curcumina/uso terapêutico , Feminino , Humanos , Leite , Polifenóis/farmacologia , Ratos , Resveratrol/farmacologia , Resveratrol/uso terapêutico
5.
Biomedicines ; 10(2)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203618

RESUMO

This study aimed to characterize an animal model of colorectal cancer (CRC) in the early stages of disease development. Twenty-nine male Wistar rats were divided into two control groups (CTRL1 and CTRL2), receiving EDTA-saline injections and two induced groups (CRC1 and CRC2), receiving 1,2-dimethylhydrazine (DMH) injections for seven consecutive weeks. CRC1 and CTRL1 were euthanized at the 11th week, while CRC2 and CTRL2 were euthanized at the 17th week. DMH treatment decreased microhematocrit values and IL-6, ghrelin, and myostatin serum levels. Histopathological analysis of intestinal sections showed that DMH-treated rats were characterized by moderate to severe epithelial dysplasia. An adenoma was observed in one animal (CRC2 group), and the presence of inflammatory infiltrate at the intestinal level was primarily observed in DMH-treated animals. DMH also induced Ki-67 immunoexpression. The gut microbiota analysis showed a higher abundance of Firmicutes, Clostridia, Clostridiales, Peptostreptococcaceae, Blautia, Romboutsia, and Clostridium sensu stricto in CRC than CTRL rats, whereas Prevotellaceae, Prevotella, Akkermansia, and Lactobacillus levels were more prevalent in CTRL animals. Our results suggest that this model could be helpful to investigate chemoprevention in the early stages of CRC.

6.
Mol Nutr Food Res ; 66(21): e2101019, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35118817

RESUMO

Urolithins, metabolites produced by the gut microbiota from the polyphenols ellagitannins and ellagic acid, are discovered by the research group in humans almost 20 years ago. Pioneering research suggests urolithins as pleiotropic bioactive contributors to explain the health benefits after consuming ellagitannin-rich sources (pomegranates, walnuts, strawberries, etc.). Here, this study comprehensively updates the knowledge on urolithins, emphasizing the review of the literature published during the last 5 years. To date, 13 urolithins and their corresponding conjugated metabolites (glucuronides, sulfates, etc.) have been described and, depending on the urolithin, detected in different human fluids and tissues (urine, blood, feces, breastmilk, prostate, colon, and breast tissues). There has been a substantial advance in the research on microorganisms involved in urolithin production, along with the compositional and functional characterization of the gut microbiota associated with urolithins metabolism that gives rise to the so-called urolithin metabotypes (UM-A, UM-B, and UM-0), relevant in human health. The design of in vitro studies using physiologically relevant assay conditions (molecular forms and concentrations) is still a pending subject, making some reported urolithin activities questionable. In contrast, remarkable progress has been made in the research on the safety, bioactivity, and associated mechanisms of urolithin A, including the first human interventions.


Assuntos
Microbioma Gastrointestinal , Juglans , Masculino , Humanos , Microbioma Gastrointestinal/fisiologia , Cumarínicos/farmacologia , Cumarínicos/metabolismo , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/metabolismo , Fezes , Ácido Elágico
7.
Food Funct ; 12(21): 10324-10355, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558584

RESUMO

Despite the high human interindividual variability in response to (poly)phenol consumption, the cause-and-effect relationship between some dietary (poly)phenols (flavanols and olive oil phenolics) and health effects (endothelial function and prevention of LDL oxidation, respectively) has been well established. Most of the variables affecting this interindividual variability have been identified (food matrix, gut microbiota, single-nucleotide-polymorphisms, etc.). However, the final drivers for the health effects of (poly)phenol consumption have not been fully identified. At least partially, these drivers could be (i) the (poly)phenols ingested that exert their effect in the gastrointestinal tract, (ii) the bioavailable metabolites that exert their effects systemically and/or (iii) the gut microbial ecology associated with (poly)phenol metabolism (i.e., gut microbiota-associated metabotypes). However, statistical associations between health effects and the occurrence of circulating and/or excreted metabolites, as well as cross-sectional studies that correlate gut microbial ecologies and health, do not prove a causal role unequivocally. We provide a critical overview and perspective on the possible main drivers of the effects of (poly)phenols on human health and suggest possible actions to identify the putative actors responsible for the effects.


Assuntos
Dieta/métodos , Microbioma Gastrointestinal/fisiologia , Fenóis/metabolismo , Fenóis/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Polifenóis/metabolismo , Polifenóis/farmacologia
8.
Mol Nutr Food Res ; 65(6): e2001048, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33458928

RESUMO

SCOPE: Poly-pharmacological therapy shapes the gut microbiota (GM) in metabolic syndrome (MetS) patients. The effects of polyphenols in poly-medicated MetS patients are unknown. METHODS AND RESULTS: A randomized, placebo-controlled, double-blinded, and crossover trial in poly-medicated MetS patients (n=50) explored whether the effects of a pomegranate extract nutraceutical (PE, 320 mg phenolics/day for 1 month) are affected by the drug therapy. Considering the lipid-lowering (LL-), anti-hypertensive (HP-) and(or) anti-diabetic (AD-) treatments: GM (16S rRNA sequencing), short-chain fatty acids, 40 inflammatory-metabolic and endotoxemia-related biomarkers, associations between biomarkers and GM with 53 cardiometabolic dysfunctions-related single-nucleotide polymorphisms (SNPs), and urolithin metabotypes (UMs) influence are evaluated. Representative SNPs-GM associations after PE include Lactococcus and ClostridiumXIVa with rs5443-GNB3 (G-protein-ß-polypeptide-3) and ClostridiumXIVa with rs7903146-TCF7L2 (transcription-factor-7-like-2) and rs1137101-LEPR (leptin-receptor). PE decreases sICAM-1 in LL-patients and the lipopolysaccharide-binding protein in all the patients. PE does not affect the other patients' markers as a group or stratifying by UMs. After PE, Lactococcus increases in AD-, LL-, and HP-patients, Bifidobacterium increases in LL- and AD-, while Clostridium XIVa decreases in non-LL- and non-HP-patients. CONCLUSION: The prebiotic effect of PE depends on the medication, mainly on HP-treatments. Targeting GM can complement MetS therapy, but the patients' drug therapy should be considered individually.


Assuntos
Microbioma Gastrointestinal/efeitos dos fármacos , Síndrome Metabólica/dietoterapia , Síndrome Metabólica/microbiologia , Extratos Vegetais/farmacologia , Punica granatum/química , Adulto , Cumarínicos/urina , Suplementos Nutricionais , Feminino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/fisiologia , Humanos , Masculino , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/genética , Pessoa de Meia-Idade , Extratos Vegetais/química , Polimorfismo de Nucleotídeo Único , Prebióticos
9.
J Agric Food Chem ; 68(45): 12606-12616, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33135412

RESUMO

The maternal-infant transmission of several urolithins through breast milk and the gut colonization of infants by the urolithin-producing bacterium Gordonibacter during their first year of life were explored. Two trials (proof-of-concept study: n = 11; validation study: n = 30) were conducted, where breastfeeding mothers consumed walnuts as a dietary source of urolithin precursors. An analytical method was developed and validated to characterize the urolithin profile in breast milk. Total urolithins ranged from 8.5 to 176.9 nM, while they were not detected in breast milk of three mothers. The mothers' urolithin metabotypes governed the urolithin profile in breast milk, which might have biological significance on infants. A specific quantitative polymerase chain reaction method allowed monitoring the gut colonization of infants by Gordonibacter during their first year of life, and neither breastfeeding nor vaginal delivery was essential for this. The pattern of Gordonibacter establishment in babies was conditioned by their mother's urolithin metabotype, probably because of mother-baby close contact.


Assuntos
Actinobacteria/metabolismo , Cumarínicos/metabolismo , Microbioma Gastrointestinal , Recém-Nascido/metabolismo , Juglans/metabolismo , Leite Humano/química , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/crescimento & desenvolvimento , Adulto , Aleitamento Materno , Cumarínicos/química , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido/crescimento & desenvolvimento , Cinética , Masculino , Troca Materno-Fetal , Leite Humano/metabolismo , Mães , Nozes/metabolismo , Gravidez , Adulto Jovem
10.
Sci Rep ; 10(1): 7850, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398726

RESUMO

Environmental and genetic factors are associated with pandemic obesity since childhood. However, the association of overweight-obesity with these factors, acting as a consortium, has been scarcely studied in children. We aimed here to assess the probabilities of being overweighed-obese in a randomly recruited cohort of Spanish children and adolescents (n = 415, 5-17 years-old) by estimating the odds ratios for different predictor variables, and their relative importance in the prediction. The predictor variables were ethnicity, age, sex, adherence to the Mediterranean diet (KIDMED), physical activity, urolithin metabotypes (UM-A, UM-B and UM-0) as biomarkers of the gut microbiota, and 53 single-nucleotide polymorphisms (SNPs) from 43 genes mainly related to obesity and cardiometabolic diseases. A proportional-odds logistic ordinal regression, validated through bootstrap, was used to model the data. While every variable was not independently associated with overweight-obesity, however, the ordinal logistic model revealed that overweight-obesity prevalence was related to being a young boy with either UM-B or UM-0, low KIDMED score and high contribution of a consortium of 24 SNPs, being rs1801253-ADRB1, rs4343-ACE, rs8061518-FTO, rs1130864-CRP, rs659366-UCP2, rs6131-SELP, rs12535708-LEP, rs1501299-ADIPOQ, rs708272-CETP and rs2241766-ADIPOQ the top-ten contributing SNPs. Additional research should confirm and complete this model by including dietary interventions and the individuals' gut microbiota composition.


Assuntos
Cumarínicos/metabolismo , Dieta Mediterrânea , Microbioma Gastrointestinal , Obesidade/genética , Obesidade/microbiologia , Polimorfismo de Nucleotídeo Único , Adolescente , Criança , Estudos de Coortes , Exercício Físico , Feminino , Humanos , Masculino , Obesidade/metabolismo , Razão de Chances
11.
Mol Nutr Food Res ; 64(9): e1900952, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32196920

RESUMO

The full consensus on the role of dietary polyphenols as human-health-promoting compounds remains elusive. The two-way interaction between polyphenols and gut microbiota (GM) (i.e., modulation of GM by polyphenols and their catabolism by the GM) is determinant in polyphenols' effects. The identification of human metabotypes associated with a differential gut microbial metabolism of polyphenols has opened new research scenarios to explain the inter-individual variability upon polyphenols consumption. The metabotypes unequivocally identified so far are those involved in the metabolism of isoflavones (equol and(or) O-desmethylangolesin producers versus non-producers) and ellagic acid (urolithin metabotypes, including producers of only urolithin-A (UM-A), producers of urolithin-A, isourolithin-A, and urolithin-B (UM-B), and non-producers (UM-0)). In addition, the microbial metabolites (phenolic-derived postbiotics) such as equol, urolithins, valerolactones, enterolactone, and enterodiol, and 8-prenylnaringenin, among others, can exert differential health effects. The knowledge is updated and position is taken here on i) the two-way interaction between GM and polyphenols, ii) the evidence between phenolic-derived postbiotics and health, iii) the role of metabotypes as biomarkers of GM and the clustering of individuals depending on their metabotypes (metabotyping) to explain polyphenols' effects, and iv) the gut microbial metabolism of catecholamines to illustrate the intersection between personalized nutrition and precision medicine.


Assuntos
Microbioma Gastrointestinal/fisiologia , Polifenóis/farmacologia , Biomarcadores/metabolismo , Catecolaminas/metabolismo , Enzimas/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Metaboloma
12.
Microorganisms ; 8(3)2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32183480

RESUMO

The gut microbiota (GM) has attracted attention as a new target to combat several diseases, including metabolic syndrome (MetS), a pathological condition with many factors (diabetes, obesity, dyslipidemia, hypertension, etc.) that increase cardiovascular disease (CVD) risk. However, the existence of a characteristic taxonomic signature associated with obesity-related metabolic dysfunctions is under debate. To investigate the contribution of the CVD risk factors and(or) their associated drug treatments in the composition and functionality of GM in MetS patients, we compared the GM of obese individuals (n = 69) vs. MetS patients (n = 50), as well as within patients, depending on their treatments. We also explored associations between medication, GM, clinical variables, endotoxemia, and short-chain fatty acids. Poly-drug treatments, conventional in MetS patients, prevented the accurate association between medication and GM profiles. Our results highlight the heterogeneity of taxonomic signatures in MetS patients, which mainly depend on the CVD risk factors. Hypertension and(or) its associated medication was the primary trait involved in the shaping of GM, with an overabundance of lipopolysaccharide-producing microbial groups from the Proteobacteria phylum. In the context of precision medicine, our results highlight that targeting GM to prevent and(or) treat MetS should consider MetS patients more individually, according to their CVD risk factors and associated medication.

13.
Nutrients ; 11(9)2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31484413

RESUMO

The metabolism of dietary polyphenols ellagitannins by the gut-microbiota allows the human stratification in urolithin metabotypes depending on the final urolithins produced. Metabotype-A only produces urolithin-A, metabotype-B yields urolithin-B and isourolithin-A in addition to urolithin-A, and metabotype 0 does not produce urolithins. Metabotype-A has been suggested to be 'protective', and metabotype-B dysbiotic-prone to cardiometabolic impairments. We analyzed the gut-microbiome of 40 healthy women and determined their metabotypes and enterotypes, and their associations with anthropometric and gut-microbial changes after 3 weeks, 4, 6, and 12 months postpartum. Metabotype-A was predominant in mothers who lost weight (≥2 kg) (75%) versus metabotype-B (54%). After delivery, the microbiota of metabotype-A mothers changed, unlike metabotype-B, which barely changed over 1 year. The metabotype-A discriminating bacteria correlated to the decrease of the women's waist while some metabotype-B bacteria were inversely associated with a reduction of body mass index (BMI), waist, and waist-to-hip ratio. Metabotype-B was associated with a more robust and less modulating microbial and anthropometric profiles versus metabotype-A, in which these profiles were normalized through the 1-year follow-up postpartum. Consequently, urolithin metabotypes assessment could be a tool to anticipate the predisposition of women to normalize their anthropometric values and gut-microbiota, significantly altered during pregnancy and after childbirth.


Assuntos
Cumarínicos/metabolismo , Microbioma Gastrointestinal/fisiologia , Período Pós-Parto , Adulto , Antropometria , Feminino , Humanos , Taninos Hidrolisáveis/metabolismo , Fatores de Tempo
14.
Mol Nutr Food Res ; 63(2): e1800819, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30444059

RESUMO

SCOPE: The stratification of individuals according to their gut microbiota metabotypes is crucial to understand the polyphenols health effects as reported for isoflavones and ellagitannins. To date, the existence of human gut microbiota metabotypes associated with proanthocyanidins (PAs) catabolism remains unclear. METHODS & RESULTS: Sixty-eight healthy volunteers (40 adolescents and 28 adults) consumed a mixture of walnuts, almonds, and hazelnuts for 3 days, providing 163.65 ± 11.74 mg of PAs. Urine samples were analyzed by ultra-performance LC-ESI-quadrupole time-of-flight. Twenty-one isomers of conjugated valerolactones and valeric acids were identified, which derived from six valerolactone and valeric acid precursors after analysis of hydrolyzed urine. This combined approach allowed discrimination between the inter-individual variability related to phase-II enzymes polymorphisms and the metabolism of PAs by the gut microbiota. No associations of PAs metabolism with gender, age, BMI, or ellagitannin metabotypes were found. Different quantitative excretion was observed after multivariate analysis but not true gut microbiota metabotypes associated with PAs catabolism. CONCLUSIONS: The metabolism of PAs does not reveal urinary metabolites consistent with distinctive gut microbiota metabotypes. The quantitative excretion of metabolites is inadequate to stratify individuals due to the strong influence of external factors (source, quantity, and time of the last intake of PAs, etc.).


Assuntos
Microbioma Gastrointestinal , Nozes/química , Proantocianidinas/metabolismo , Adolescente , Adulto , Feminino , Humanos , Hidrólise , Masculino , Ácidos Pentanoicos/metabolismo , Taninos/análise
15.
Mol Nutr Food Res ; 63(4): e1800958, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30471188

RESUMO

SCOPE: The gut microbiota ellagitannin-metabolizing phenotypes (i.e., urolithin metabotypes [UMs]) are proposed as potential cardiovascular disease (CVD) risk biomarkers because the host blood lipid profile is reported to be associated with specific UMs. However, the link for this association remains unknown so far. METHODS AND RESULTS: The gut microbiome of 249 healthy individuals is analyzed using 16S rDNA sequencing analysis. Individuals are also stratified by UMs (UM-A, UM-B, and UM-0) and enterotypes (Bacteroides, Prevotella, and Ruminococcus). Associations of UMs discriminating bacteria with CVD risk markers are investigated. Distribution and gut microbiota composition of UMs and enterotypes are not coincident. Almost half of the discriminating genera between UM-A and UM-B belongs to the Coriobacteriaceae family. UM-B individuals present higher blood cholesterol levels and higher alpha-diversity, including Coriobacteriaceae family, than those of UM-A. Coriobacteriaceae, whose abundance is the highest in UM-B, is positively correlated with total cholesterol, LDL cholesterol, and body mass index. CONCLUSIONS: Results herein suggest that the family Coriobacteriaceae could be a link between individuals' UMs and their blood cholesterol levels. Further research is needed to explore the mechanisms of the host metabolic phenotype, including cholesterol excretion products, to modulate this bacterial family.


Assuntos
Doenças Cardiovasculares/microbiologia , Cumarínicos/metabolismo , Microbioma Gastrointestinal/fisiologia , Microbiota/fisiologia , Sobrepeso/microbiologia , Adulto , Idoso , Doenças Cardiovasculares/sangue , Colesterol/sangue , Fezes/microbiologia , Feminino , Humanos , Taninos Hidrolisáveis/metabolismo , Juglans , Lythraceae , Masculino , Pessoa de Meia-Idade , Sobrepeso/dietoterapia
16.
Mol Nutr Food Res ; 62(11): e1800160, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29665619

RESUMO

SCOPE: Gut microbiota dysbiosis, intestinal barrier failure, obesity, metabolic endotoxemia, and pro-inflammatory status promote cardiovascular risk. However, the modulation of the gut microbiome to prevent endotoxemia in obesity has been scarcely studied. We investigated the association between gut microbiota modulation and plasma lipopolysaccharide-binding protein (LBP), a surrogate marker of endotoxemia, in overweight-obese individuals. METHODS AND RESULTS: In a randomized trial, 49 overweight-obese subjects (body mass index> 27 kg m-2 ) with mild hypelipidemia daily consumed, in a cross-over fashion, two doses (D1 and D2, lasting 3 weeks each) of pomegranate extract (PE) or placebo alternating with 3 weeks of wash-out periods. A significant decrease (p < 0.05) of plasma LBP and a marginal decrease (p = 0.054) of high-sensitivity C-reactive protein were observed, but only after PE-D2 administration (656 mg phenolics). 16S rDNA sequencing analyses revealed the increase of microorganisms important for maintaining normal balance of gut microbiota and gut barrier function, particularly Bacteroides, Faecalibacterium, Butyricicoccus, Odoribacter, and Butyricimonas. PE-D2 also decreased pro-inflammatory microorganisms including Parvimonas, Methanobrevibacter, and Methanosphaera. Remarkably, plasma LBP reduction was significantly associated (p < 0.05) with both Faecalibacterium and Odoribacter increase and Parvimonas decrease. CONCLUSIONS: Consumption of PE decreased endotoxemia in overweight-obese individuals by reshaping the gut microbiota, mainly through the modulation of Faecalibacterium, Odoribacter, and Parvimonas.


Assuntos
Proteínas de Transporte/sangue , Microbioma Gastrointestinal/efeitos dos fármacos , Lythraceae/química , Glicoproteínas de Membrana/sangue , Sobrepeso/dietoterapia , Extratos Vegetais/farmacologia , Proteínas de Fase Aguda , Adulto , Proteína C-Reativa/análise , DNA Ribossômico , Suplementos Nutricionais , Endotoxemia/dietoterapia , Endotoxemia/metabolismo , Endotoxemia/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Masculino , Pessoa de Meia-Idade , Obesidade/dietoterapia , Obesidade/microbiologia , Sobrepeso/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...