Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Cardiol ; 111(9): 1344-50, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23411103

RESUMO

The introduction of speckle tracking imaging (STI) allowed the quantification of the regional myocardial function in the right ventricular (RV) free wall using deformation parameters. We sought to evaluate the potential utility of STI at rest and after stress to predict arrhythmogenic RV dysplasia (ARVD). We studied 19 patients with ARVD (diagnosed according to the task force criteria) and 19 healthy age- and gender-matched subjects. Both 2-dimensional and 3-dimensional echocardiography were performed. The RV and left ventricular annular peak systolic velocities were measured using tissue Doppler imaging. The RV-left ventricular peak systolic longitudinal strain (LS) was obtained in the basal, mid, and apical segments in the apical 4-chamber view using STI. An exercise stress-echocardiographic test was undertaken using bicycle ergometry with the patient in the supine position for all patients, and the indexes were assessed at peak effort. The STI measurements were determined using offline analysis programs. The 3-dimensional RV ejection fraction and strain were significantly lower in patients with ARVD than in the controls. The RV strain values at rest did not change significantly during maximum physical effort in the patients with ARVD. The receiver operating characteristic curves suggested that the thresholds offering an adequate compromise between sensitivity and specificity for the detection of ARVD were 9.35 cm/s for the RV annular peak systolic velocity (area under the curve 0.81), 42% for 3-dimensional RV ejection fraction (area under the curve 0.85), -25% for mean global RV-LS (area under the curve 0.86), -18% for the lowest peak systolic RV-LS (area under the curve 0.88), and -1.2 for peak minus baseline global change of stress RV-LS (area under the curve 0.92). In conclusion, STI at rest and during stress might enable quantitative assessment of RV function and the detection of ARVD and have potential clinical value in the treatment of these patients.


Assuntos
Displasia Arritmogênica Ventricular Direita/diagnóstico por imagem , Ecocardiografia Doppler/estatística & dados numéricos , Teste de Esforço/métodos , Ventrículos do Coração/diagnóstico por imagem , Descanso , Adulto , Idoso , Displasia Arritmogênica Ventricular Direita/fisiopatologia , Feminino , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes , Sístole , Função Ventricular Direita , Adulto Jovem
2.
ISRN Cardiol ; 2012: 326809, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22462024

RESUMO

Adenosine and inosine are both key intracellular energy substrates for nucleotide synthesis by salvage pathways, especially during ischemic stress conditions. Additionally they both possess cell protective and cell repair properties. The objective of this study is to detect potential advantages of the combination of adenosine and inosine versus each drug alone, in terms of ventricular function, infarct size reduction and angiogenesis. Myocardial ischemia was created in rodents and treated with adenosine, inosine or their combination. Results of experiments showed that the combination of both drugs significantly reduced infarct size and improved myocardial angiogenesis and ventricular function. The two compounds, while chemically similar, use different intracellular pathways, allowing for complementary biological activities without overlapping. The drug combination at specific 1 : 5 adenosine : inosine dose ratio demonstrated positive cardiologic effects, deserving further evaluation as an adjunct to reperfusion techniques during and after acute coronary syndrome. The association of adenosine and inosine may contribute to reduce myocardial infarction morbidity and mortality rates.

4.
J Thorac Cardiovasc Surg ; 138(4): 994-1001, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19660354

RESUMO

BACKGROUND: Until now, cell therapy has constituted a passive therapeutic approach; the only effects seem to be related to the reduction of the myocardial fibrosis and the limitation of the adverse ventricular remodeling. Cardiac resynchronization therapy is indicated in patients with heart failure to correct conduction disorders associated with chronic systolic and diastolic dysfunction. The association of electrostimulation with cellular cardiomyoplasty could be a way to transform passive cell therapy into "dynamic cellular support." Electrostimulation of ventricles following skeletal myoblast implantation should induce the contraction of the transplanted cells and a higher expression of slow myosin, which is better adapted for chronic ventricular assistance. The purpose of this study is to evaluate myogenic cell transplantation in an ischemic heart model associated with cardiac resynchronization therapy. METHODS: Twenty two sheep were included. All animals underwent myocardial infarction by ligation of 2 coronary artery branches (distal left anterior descending artery and D2). After 4 weeks, autologous cultured myoblasts were injected in the infarcted areas with or without pacemaker implantation. Atrial synchronized biventricular pacing was performed using epicardial electrodes. Echocardiography was performed at 4 weeks (baseline) and 12 weeks after infarction. RESULTS: Echocardiography showed a significant improvement in ejection fraction and limitation of left ventricular dilatation in cell therapy with cardiac resynchronization therapy as compared with the other groups. Viable cells were identified in the infarcted areas. Differentiation of myoblasts into myotubes and enhanced expression of slow myosin heavy chain was observed in the electrostimulated group. Transplantation of cells with cardiac resynchronization therapy caused an increase in diastolic wall thickening in the infarcted zone relative to cells-only group and cardiac resynchronization therapy-only group. CONCLUSIONS: Biventricular pacing seems to induce synchronous contraction of transplanted myoblasts and the host myocardium, thus improving ventricular function. Electrostimulation was related with enhanced expression of slow myosin and the organization of myoblasts in myotubes, which are better adapted at performing cardiac work. Patients with heart failure presenting myocardial infarct scars and indication for cardiac resynchronization therapy might benefit from simultaneous cardiac pacing and cell therapy.


Assuntos
Mioblastos Esqueléticos/transplante , Infarto do Miocárdio/terapia , Marca-Passo Artificial , Animais , Estimulação Cardíaca Artificial , Cardiomioplastia , Células Cultivadas , Ecocardiografia , Feminino , Injeções , Mioblastos Esqueléticos/fisiologia , Contração Miocárdica , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Isquemia Miocárdica/terapia , Ovinos , Acidente Vascular Cerebral , Volume Sistólico , Função Ventricular Esquerda
5.
Insuf. card ; 3(1): 2-8, ene.-mar. 2008. ilus
Artigo em Espanhol | LILACS | ID: lil-633298

RESUMO

Objetivos. El trasplante celular para la regeneración del miocardio está limitado por la escasa viabilidad del injerto y la baja retención celular. En la miocardiopatía isquémica la matriz extracelular está profundamente alterada, por consiguiente, sería importante asociar un procedimiento para regenerar las células miocárdicas y restaurar la función de la matriz extracelular. En este estudio clínico, fue evaluada la terapia celular intrainfarto asociada a una matriz de colágeno sembrada con células e implantada sobre ventrículos infartados.Métodos. En 15 pacientes (54,2±3,8 años de edad) que presentaban cicatrices miocárdicas postisquémicas en el ventrículo izquierdo (VI) y con indicación de cirugía de revascularización miocárdica, se implantaron, durante la operación, células de la médula ósea mononucleares autólogas (CMO) en la cicatriz. Se agregó sobre esa zona infartada una matriz de colágeno tipo I con el mismo número de CMO


Resultados. No hubo mortalidad ni eventos adversos relacionados (seguimiento 15±4,2 meses). La clase funcional según la New York Heart Association (NYHA) mejoró de 2,3±0,5 a 1,4±0,3 (p=0,005). El volumen de fin de diástole del VI evolucionó de 142±24 a 117±21 mL (p=0,03), el tiempo de desaceleración del llenado del VI mejoró aumentando de 162±7 mseg a 196±8 mseg (p=0,01). El espesor del área cicatrizada progresó de 6±1,4 a 9±1,5 mm (p=0,005). La fracción de eyección (FE) mejoró de 25±7 a 33±5% (p=0,04).Conclusiones. La inyección intramiocárdica de células de médula ósea y la fijación simultánea de una matriz sembrada con progenitores celulares (stem cells) sobre el epicardio fue simple y sin complicaciones. La matriz de colágeno aumento el espesor de la zona del infarto con nuevos tejidos viables, limitando la dilatación ventricular y mejorando la función diastólica. Estos resultados positivos no pueden ser absolutamente relacionados a las células y la matriz, pues se asociaron puentes de revascularización coronaria. En conclusión, la ingeniería de tejidos puede extender las indicaciones y beneficios de la terapia con células madre en cardiología, convirtiéndose en un camino prometedor para la creación de un “miocardio bioartificial”


Objectives. Stem cell therapy for myocardial regeneration is limited by poor graft viability and low cell retention. In ischemic cardiomyopathy the extracellular matrix is pathologically modified, therefore it could be important to associate a procedure aiming at regenerating both, myocardial cells and the extracellular matrix. We evaluated intrainfarct cell therapy associated with a cell-seeded collagen scaffold grafted onto infarcted hearts.Methods. In 15 patients (aged 54.2±3.8 years) presenting LV postischemic myocardial scars and with indication for a single off-pump-CABG, autologous mononuclear bone marrow cells (BMC) were implanted during surgery in the scar. A 3D collagen type I matrix seeded with the same number of BMC was grafted onto the infarction zone.Results. There was no mortality and any related adverse events (follow-up 15±4.2 months). NYHA FC improved from 2.3±0.5 to 1.4±0.3 (p=0.005). LV end-diastolic volume evolved from 142±24 to 117±21 mL (p=0.03), LV filling deceleration time improved from 162±7 ms to 196±8 ms (p=0.01). Scar area thickness progress from 6±1.4 to 9±1.5mm (p=0.005). EF improved from 25±7 to 33±5% (p=0.04).Conclusions. Simultaneous intramyocardial injection of mononuclear bone marrow cells and fixation of a BMC-seeded matrix onto the epicardium is feasible and safe. The cell seeded collagen matrix seems to increase the thickness of the infarct scar with viable tissues and help to normalize cardiac wall stress in injured regions, thus limiting ventricular remodelling and improving diastolic function. Patients’ improvements can not be conclusively related to the cells and matrix due to the association of CABG. Cardiac tissue engineering should extend the indications and benefits of stem cell therapy in cardiology, becoming a promising way for the creation of a “bioartificial myocardium”


Assuntos
Humanos , Cardiomioplastia , Terapia Baseada em Transplante de Células e Tecidos , Insuficiência Cardíaca , Miocárdio , Engenharia Tecidual
6.
Ann Thorac Surg ; 85(3): 901-8, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18291168

RESUMO

BACKGROUND: Cell transplantation for the regeneration of ischemic myocardium is limited by poor graft viability and low cell retention. In ischemic cardiomyopathy, the extracellular matrix is deeply altered; therefore, it could be important to associate a procedure aiming at regenerating myocardial cells and restoring the extracellular matrix function. We evaluated the feasibility and safety of intrainfarct cell therapy associated with a cell-seeded collagen scaffold grafted onto infarcted ventricles. METHODS: In 20 consecutive patients presenting with left ventricular postischemic myocardial scars and indication for coronary artery bypass graft surgery, bone marrow cells were implanted during surgery. In the last 10 patients, we added a collagen matrix seeded with bone marrow cells, placed onto the scar. RESULTS: There was no mortality and any related adverse events (follow-up 10 +/- 3.5 months). New York Heart Association functional class improved in both groups from 2.3 +/- 0.5 to 1.3 +/- 0.5 (matrix, p = 0.0002) versus 2.4 +/- 0.5 to 1.5 +/- 0.5 (no matrix, p = 0.001). Left ventricular end-diastolic volume evolved from 142.4 +/- 24.5 mL to 112.9 +/- 27.3 mL (matrix, p = 0.02) versus 138.9 +/- 36.1 mL to 148.7 +/- 41 mL (no matrix, p = 0.57), left ventricular filling deceleration time improved significantly in the matrix group from 162 +/- 7 ms to 198 +/- 9 ms (p = 0.01) versus the no-matrix group (from 159 +/- 5 ms to 167 +/- 8 ms, p = 0.07). Scar area thickness progressed from 6 +/- 1.4 to 9 mm +/- 1.1 mm (matrix, p = 0.005) versus 5 +/- 1.5 mm to 6 +/- 0.8 mm (no matrix, p = 0.09). Ejection fraction improved in both groups, from 25.3% +/- 7.3% to 32% +/- 5.4% (matrix, p = 0.03) versus 27.2% +/- 6.9% to 34.6% +/- 7.3% (no matrix, p = 0.031). CONCLUSIONS: This tissue-engineered approach is feasible and safe and appears to improve the efficiency of cellular cardiomyoplasty. The cell-seeded collagen matrix increases the thickness of the infarct scar with viable tissue and helps to normalize cardiac wall stress in injured regions, thus limiting ventricular remodeling and improving diastolic function.


Assuntos
Implantes Absorvíveis , Transplante de Medula Óssea , Colágeno Tipo I , Infarto do Miocárdio/cirurgia , Alicerces Teciduais , Procedimentos Cirúrgicos Cardíacos/métodos , Estudos de Viabilidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
7.
Tissue Eng ; 13(11): 2681-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17691866

RESUMO

The objective of cellular cardiomyoplasty is to regenerate the myocardium using implantation of living cells. Because the extracellular myocardial matrix is deeply altered in ischemic cardiomyopathies, it could be important to create a procedure aiming at regenerating both myocardial cells and the extracellular matrix. We evaluated the potential of a collagen matrix seeded with cells and grafted onto infarcted ventricles. A myocardial infarction was created in 45 mice using coronary artery ligation. Animals were randomly assigned to 4 local myocardial treatment groups. Group I underwent sham treatment (injection of cell culture medium). Group II underwent injection of human umbilical cord blood mononuclear cells (HUCBCs). Group III underwent injection of HUCBCs and fixation onto the epicardium of a collagen matrix seeded with HUCBCs. Group IV underwent fixation of collagen matrix (without cells) onto the infarct. Echocardiography was performed on postoperative days 7 and 45, followed by histological studies. Echocardiography showed that the association between the cell-loaded matrix and the intrainfarct cell implants was the most efficient approach to limiting postischemic ventricular dilation and remodeling. Ejection fraction improved in both cell-treated groups. The collagen matrix alone did not improve left ventricular (LV) function and remodeling. Histology in Group III showed fragments of the collagen matrix thickening and protecting the infarct scars. Segments of the matrix were consistently aligned along the LV wall, and cells were assembled within the collagen fibers in large populations. Intramyocardial injection of HUCBCs preserves LV function following infarction. The use of a cell-seeded matrix combined with cell injections prevents ventricular wall thinning and limits postischemic remodeling. This tissue engineering approach seems to improve the efficiency of cellular cardiomyoplasty and could emerge as a new therapeutic tool for the prevention of adverse remodeling and progressive heart failure.


Assuntos
Cardiomioplastia/métodos , Colágeno/farmacologia , Matriz Extracelular/transplante , Sangue Fetal/transplante , Transplante de Células-Tronco Hematopoéticas/métodos , Implantes Experimentais , Animais , Sangue Fetal/citologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/terapia , Distribuição Aleatória , Regeneração , Fatores de Tempo , Engenharia Tecidual , Transplante Heterólogo , Remodelação Ventricular
8.
J Interv Cardiol ; 20(3): 188-96, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17524110

RESUMO

AIMS: We compared two procedures for local myocardial treatment: transepicardial versus transendocardial catheter injection. Transepicardial injections were performed under direct surgical visualization whereas transendocardial injections were performed using electrophysiological guidance. METHODS: A left ventricle (LV) myocardial infarction (MI) was surgically created in 14 sheep. At 3 months, gadolinium was injected IV followed by the injection of super paramagnetic iron oxide (SPIO) into MI. Animals were divided in two groups: transepicardial injection (Group I) versus transendocardial (Group II) using "Cell-Fix" catheter injection. This catheter was developed to identify by electrophysiology the infarcted area and to stabilize injections suctioning the device to the endocardium. Postgadolinium delayed-enhancement magnetic resonance imaging (MRI) was performed to stain the infarct size. SPIO injections were used to assess the magnitude of the treated area. The ratio between SPIO black stained treatment areas and white gadolinium stained infarcted areas was calculated using MRI. RESULTS: The electrophysiological recordings by the catheter for the MI versus normal LV wall were: R wave amplitude 4.16 versus 12.08 mV (P = 0.003), slew rate (slope of the signal) 0.36 V/s versus 1.04 V/s (P = 0.008). The ratio of the SPIO diffusion into the MI was 41.2 +/- 8.1% for surgical and 63.7 +/- 8.2% for percutaneous endocardial injections (P = 0.0132). CONCLUSION: MRI allows evaluation of the extent of local myocardial treatments. The differences shown between epicardial and endocardial injections concerning the distribution of SPIO can be justified by the methodology of injection and by a more precise MI detection by electrophysiology. In conclusion, electrophysiological recordings to guide injections is superior to direct surgical visualization in terms of injecting into infarcted tissue.


Assuntos
Cateterismo Cardíaco/métodos , Endocárdio , Compostos Férricos/administração & dosagem , Gadolínio , Compostos de Ferro/administração & dosagem , Angiografia por Ressonância Magnética/métodos , Infarto do Miocárdio/terapia , Pericárdio , Animais , Eletrofisiologia , Projetos Piloto , Ovinos , Fatores de Tempo
9.
Curr Stem Cell Res Ther ; 2(2): 121-7, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-18220897

RESUMO

Ischemic myocardial disease, the main cause of heart failure, is a major public health and economic problem. Given the aging population, heart failure is becoming an increasing clinical issue and a substantial financial burden. Thus, research in heart failure is of relevant interest and importance, involving specialties such as cellular and molecular biology, tissue engineering, genetics, biophysics and electrophysiology. Stem cell-based regenerative therapy is undergoing experimental and clinical trials in order to limit the consequences of decreased contractile function and compliance of damaged ventricles following myocardial infarction or in patients presenting non-ischemic dilated cardiomyopathies. This biological approach is particularly attractive due to the potential for myocardial regeneration with a variety of myogenic and angiogenic cell types. The development of a bio-artificial myocardium using biological or synthetic matrix is a new challenge.


Assuntos
Órgãos Bioartificiais , Terapia Baseada em Transplante de Células e Tecidos , Miocárdio/metabolismo , Regeneração , Humanos , Células-Tronco , Engenharia Tecidual
10.
Cell Transplant ; 16(9): 927-34, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-18293891

RESUMO

Cell transplantation for the regeneration of ischemic myocardium is limited by poor graft viability and low cell retention. In ischemic cardiomyopathy the extracellular matrix is deeply altered; therefore, it could be important to associate a procedure aiming at regenerating myocardial cells and restoring the extracellular matrix function. We evaluated intrainfarct cell therapy associated with a cell-seeded collagen scaffold grafted onto infarcted ventricles. In 15 patients (aged 54.2 +/- 3.8 years) presenting LV postischemic myocardial scars and with indication for a single OP-CABG, autologous mononuclear bone marrow cells (BMC) were implanted during surgery in the scar. A 3D collagen type I matrix seeded with the same number of BMC was added on top of the scarred area. There was no mortality and no related adverse events (follow-up 15 +/- 4.2 months). NYHA FC improved from 2.3 +/- 0.5 to 1.4 +/- 0.3 (p = 0.005). LV end-diastolic volume evolved from 142 +/- 24 to 117 +/- 21 ml (p = 0.03), and LV filling deceleration time improved from 162 +/- 7 to 196 +/- 8 ms (p = 0.01). Scar area thickness progressed from 6 +/- 1.4 to 9 +/- 1.5 mm (p = 0.005). EF improved from 25 +/- 7% to 33 +/- 5% (p = 0.04). Simultaneous intramyocardial injection of mononuclear bone marrow cells and fixation of a BMC-seeded matrix onto the epicardium is feasible and safe. The cell-seeded collagen matrix seems to increase the thickness of the infarct scar with viable tissues and helps to normalize cardiac wall stress in injured regions, thus limiting ventricular remodeling and improving diastolic function. Patients' improvements cannot be conclusively related to the cells and matrix due to the association of CABG. Cardiac tissue engineering seems to extend the indications and benefits of stem cell therapy in cardiology, becoming a promising way for the creation of a "bioartificial myocardium." Efficacy and safety of this approach should be evaluated in a large randomized controlled trial.


Assuntos
Implantes Absorvíveis , Transplante de Medula Óssea/métodos , Colágeno Tipo I , Infarto do Miocárdio/cirurgia , Alicerces Teciduais , Transplante de Medula Óssea/efeitos adversos , Procedimentos Cirúrgicos Cardíacos/métodos , Matriz Extracelular/química , Estudos de Viabilidade , Seguimentos , Humanos , Tempo de Internação , Pessoa de Meia-Idade , Modelos Biológicos , Infarto do Miocárdio/patologia , Estatística como Assunto , Fatores de Tempo , Transplante Isogênico , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...