Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 4(3): 102402, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37402170

RESUMO

Patient-derived xenografts (PDXs) have clinical value but are time-, cost-, and labor-intensive and thus ill-suited for large-scale experiments. Here, we present a protocol to convert PDX tumors into PDxOs for long-term cultures amenable to moderate-throughput drug screens, including in-depth PDxO validation. We describe steps for PDxO preparation and mouse cell removal. We then detail PDxO validation and characterization and drug response assay. Our PDxO drug screening platform can predict therapy response in vivo and inform functional precision oncology for patients. For complete details on the use and execution of this protocol, please refer to Guillen et al.1.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Medicina de Precisão , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos/métodos
2.
Commun Biol ; 5(1): 794, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941353

RESUMO

Quantitative phase imaging (QPI) measures the growth rate of individual cells by quantifying changes in mass versus time. Here, we use the breast cancer cell lines MCF-7, BT-474, and MDA-MB-231 to validate QPI as a multiparametric approach for determining response to single-agent therapies. Our method allows for rapid determination of drug sensitivity, cytotoxicity, heterogeneity, and time of response for up to 100,000 individual cells or small clusters in a single experiment. We find that QPI EC50 values are concordant with CellTiter-Glo (CTG), a gold standard metabolic endpoint assay. In addition, we apply multiparametric QPI to characterize cytostatic/cytotoxic and rapid/slow responses and track the emergence of resistant subpopulations. Thus, QPI reveals dynamic changes in response heterogeneity in addition to average population responses, a key advantage over endpoint viability or metabolic assays. Overall, multiparametric QPI reveals a rich picture of cell growth by capturing the dynamics of single-cell responses to candidate therapies.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Proliferação de Células , Avaliação Pré-Clínica de Medicamentos , Detecção Precoce de Câncer , Feminino , Humanos
3.
Nat Cancer ; 3(2): 232-250, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35221336

RESUMO

Models that recapitulate the complexity of human tumors are urgently needed to develop more effective cancer therapies. We report a bank of human patient-derived xenografts (PDXs) and matched organoid cultures from tumors that represent the greatest unmet need: endocrine-resistant, treatment-refractory and metastatic breast cancers. We leverage matched PDXs and PDX-derived organoids (PDxO) for drug screening that is feasible and cost-effective with in vivo validation. Moreover, we demonstrate the feasibility of using these models for precision oncology in real time with clinical care in a case of triple-negative breast cancer (TNBC) with early metastatic recurrence. Our results uncovered a Food and Drug Administration (FDA)-approved drug with high efficacy against the models. Treatment with this therapy resulted in a complete response for the individual and a progression-free survival (PFS) period more than three times longer than their previous therapies. This work provides valuable methods and resources for functional precision medicine and drug development for human breast cancer.


Assuntos
Organoides , Neoplasias de Mama Triplo Negativas , Descoberta de Drogas , Xenoenxertos , Humanos , Medicina de Precisão/métodos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Estados Unidos , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Oncogene ; 40(25): 4384-4397, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34103681

RESUMO

Recurrence of metastatic breast cancer stemming from acquired endocrine and chemotherapy resistance remains a health burden for women with luminal (ER+) breast cancer. Disseminated ER+ tumor cells can remain viable but quiescent for years to decades. Contributing factors to metastatic spread include the maintenance and expansion of breast cancer stem cells (CSCs). Breast CSCs frequently exist as a minority population in therapy resistant tumors. In this study, we show that cytoplasmic complexes composed of steroid receptor (SR) co-activators, PELP1 and SRC-3, modulate breast CSC expansion through upregulation of the HIF-activated metabolic target genes PFKFB3 and PFKFB4. Seahorse metabolic assays demonstrated that cytoplasmic PELP1 influences cellular metabolism by increasing both glycolysis and mitochondrial respiration. PELP1 interacts with PFKFB3 and PFKFB4 proteins, and inhibition of PFKFB3 and PFKFB4 kinase activity blocks PELP1-induced tumorspheres and protein-protein interactions with SRC-3. PFKFB4 knockdown inhibited in vivo emergence of circulating tumor cell (CTC) populations in mammary intraductal (MIND) models. Application of PFKFB inhibitors in combination with ER targeted therapies blocked tumorsphere formation in multiple models of advanced breast cancer including tamoxifen (TamR) and paclitaxel (TaxR) resistant models, murine tumor cells, and ER+ patient-derived organoids (PDxO). Together, our data suggest that PELP1, SRC-3, and PFKFBs cooperate to drive ER+ tumor cell populations that include CSCs and CTCs. Identifying non-ER pharmacological targets offers a useful approach to blocking metastatic escape from standard of care ER/estrogen (E2)-targeted strategies to overcome endocrine and chemotherapy resistance.


Assuntos
Neoplasias da Mama/genética , Proteínas Correpressoras/genética , Resistencia a Medicamentos Antineoplásicos/genética , Coativador 3 de Receptor Nuclear/genética , Fosfofrutoquinase-2/genética , Receptores de Estrogênio/genética , Fatores de Transcrição/genética , Animais , Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Estrogênios/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Células MCF-7 , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Paclitaxel/farmacologia , Fosforilação/genética , Tamoxifeno/farmacologia , Regulação para Cima/genética
6.
Nat Genet ; 53(1): 86-99, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414553

RESUMO

Patient-derived xenografts (PDXs) are resected human tumors engrafted into mice for preclinical studies and therapeutic testing. It has been proposed that the mouse host affects tumor evolution during PDX engraftment and propagation, affecting the accuracy of PDX modeling of human cancer. Here, we exhaustively analyze copy number alterations (CNAs) in 1,451 PDX and matched patient tumor (PT) samples from 509 PDX models. CNA inferences based on DNA sequencing and microarray data displayed substantially higher resolution and dynamic range than gene expression-based inferences, and they also showed strong CNA conservation from PTs through late-passage PDXs. CNA recurrence analysis of 130 colorectal and breast PT/PDX-early/PDX-late trios confirmed high-resolution CNA retention. We observed no significant enrichment of cancer-related genes in PDX-specific CNAs across models. Moreover, CNA differences between patient and PDX tumors were comparable to variations in multiregion samples within patients. Our study demonstrates the lack of systematic copy number evolution driven by the PDX mouse host.


Assuntos
Variações do Número de Cópias de DNA/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Bases de Dados Genéticas , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Metástase Neoplásica , Polimorfismo de Nucleotídeo Único/genética , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...