Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Muscle Nerve ; 69(1): 103-114, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37929655

RESUMO

INTRODUCTION/AIMS: Prior studies have emphasized the role of inflammation in the response to injury and muscle regeneration, but little emphasis has been placed on characterizing the relationship between innate inflammation, pain, and functional impairment. The aim of our study was to determine the contribution of innate immunity to prolonged pain following muscle contusion. METHODS: We developed a closed-impact mouse model of muscle contusion and a macrophage-targeted near-infrared fluorescent nanoemulsion. Closed-impact contusions were delivered to the lower left limb. Pain sensitivity, gait dysfunction, and inflammation were assessed in the days and weeks post-contusion. Macrophage accumulation was imaged in vivo by injecting i.v. near-infrared nanoemulsion. RESULTS: Despite hindpaw hypersensitivity persisting for several weeks, disruptions to gait and grip strength typically resolved within 10 days of injury. Using non-invasive imaging and immunohistochemistry, we show that macrophage density peaks in and around the affected muscle 3 day post-injury and quickly subsides. However, macrophage density in the ipsilateral sciatic nerve and dorsal root ganglia (DRG) increases more gradually and persists for at least 14 days. DISCUSSION: In this study, we demonstrate pain sensitivity is influenced by the degree of lower muscle contusion, without significant changes to gait and grip strength. This may be due to modulation of pain signaling by macrophage proliferation in the sciatic nerve, upstream from the site of injury. Our work suggests chronic pain developing from muscle contusion is driven by macrophage-derived neuroinflammation in the peripheral nervous system.


Assuntos
Contusões , Dor , Camundongos , Animais , Macrófagos , Contusões/diagnóstico por imagem , Músculos , Inflamação
2.
Brain Behav Immun ; 112: 220-234, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315702

RESUMO

Originally identified in fibroblasts, Protease Inhibitor (PI)16 was recently shown to be crucial for the development of neuropathic pain via effects on blood-nerve barrier permeability and leukocyte infiltration, though its impact on inflammatory pain has not been established. Using the complete Freund's Adjuvant inflammatory pain model, we show that Pi16-/- mice are protected against sustained inflammatory pain. Accordingly, intrathecal delivery of a PI16 neutralizing antibody in wild-type mice prevented sustained CFA pain. In contrast to neuropathic pain models, we did not observe any changes in blood-nerve barrier permeability due to PI16 deletion. Instead, Pi16-/- mice display reduced macrophage density in the CFA-injected hindpaw. Furthermore, there was a significant bias toward CD206hi (anti-inflammatory) macrophages in the hindpaw and associated dorsal root ganglia. Following CFA, intrathecal depletion of CD206+ macrophages using mannosylated clodronate liposomes promoted sustained pain in Pi16-/- mice. Similarly, an IL-10 neutralizing antibody also promoted sustained CFA pain in the Pi16-/ when administered intrathecally. Collectively, our results point to fibroblast-derived PI16 mediating substantial differences in macrophage phenotype in the pain neuroaxis under conditions of inflammation. The co-expression of PI16 alongside fibroblast markers in human DRG raise the likelihood that a similar mechanism operates in human inflammatory pain states. Collectively, our findings may have implications for targeting fibroblast-immune cell crosstalk for the treatment of chronic pain.


Assuntos
Dor Crônica , Neuralgia , Camundongos , Humanos , Animais , Inflamação , Macrófagos , Fibroblastos , Anticorpos Neutralizantes/farmacologia , Gânglios Espinais , Hiperalgesia , Proteínas de Transporte , Glicoproteínas
3.
Brain Behav ; 11(2): e01973, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33382528

RESUMO

INTRODUCTION: Several clinical studies have tested the efficacy of insulin-sensitizing drugs for cognitive enhancement in Alzheimer's disease (AD) patients, as type 2 diabetes (T2D) is a well-recognized risk factor for AD. Pilot studies assessing FDA-approved diabetes drugs in subjects with early-stage disease have found cognitive benefit in subjects comorbid for insulin resistance. In AD mouse models with concomitant insulin resistance, we have shown that 4 weeks of RSG can reverse peripheral and central insulin resistance concomitant with rescue of hippocampus-dependent fear learning and memory and hippocampal circuitry deficits in 9-month-old (9MO) Tg2576 mice with no effect in wild-type (WT) mice. Bioinformatics analysis of genomic and proteomic data reveals an intimate link between PPARγ and MAPK/ERK signaling in the hippocampus. We then demonstrated a direct interaction between PPARγ and phospho-ERK in vitro and in vivo during memory consolidation. The translational value of this discovery is evidenced by the positive correlational relationship between human AD postmortem brain levels of pERK-PPARγ nuclear complexes with cognitive reserve. METHODS: We tested whether insulin sensitizer therapy could rescue spatial navigation, context discrimination, and object recognition learning and memory in aged wild-type and Tg2576 mice in addition to hippocampus-dependent contextual fear learning and memory, as we have previously reported. RESULTS: We found that rosiglitazone treatment improved cognitive domains that predominantly rely upon the dorsal hippocampus rather than those that additionally engage the ventral hippocampus. CONCLUSION: These results suggest that insulin sensitizer therapy with rosiglitazone improved age- and AD-related learning and memory deficits in circuit selective ways.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Idoso , Doença de Alzheimer/tratamento farmacológico , Animais , Cognição , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , PPAR gama/metabolismo , Proteômica , Rosiglitazona/farmacologia
4.
Brain Plast ; 6(1): 5-25, 2020 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-33680843

RESUMO

Historically, most alcohol neurotoxicity studies were conducted in young adult males and focused on chronic intake. There has been a shift towards studying the effects of alcohol on the adolescent brain, due to alcohol consumption during this formative period disrupting the brain's developmental trajectory. Because the most typical pattern of adolescent alcohol intake is heavy episodic (binge) drinking, there has also been a shift towards the study of binge alcohol-induced neurobehavioral toxicity. It has thus become apparent that binge alcohol damages the adolescent brain and there is increasing attention to sex-dependent effects. Significant knowledge gaps remain in our understanding of the effects of binge alcohol on the female brain, however. Moreover, it is unsettling that population-level studies indicate that the prevalence of binge drinking is increasing among American women, particularly those in older age groups. Although study of adolescents has made it apparent that binge alcohol disrupts ongoing brain maturational processes, we know almost nothing about how it impacts the aging brain, as studies of its effects on the aged brain are relatively scarce, and the study of sex-dependent effects is just beginning. Given the rapidly increasing population of older Americans, it is crucial that studies address age-dependent effects of binge alcohol, and given the increase in binge drinking in older women who are at higher risk for cognitive decline relative to men, studies must encompass both sexes. Because adolescence and older age are both characterized by age-typical brain changes, and because binge drinking is the most common pattern of alcohol intake in both age groups, the knowledge that we have amassed on binge alcohol effects on the adolescent brain can inform our study of its effects on the aging brain. In this review, we therefore cover the current state of knowledge of sex and age-dependent effects of binge alcohol, as well as statistical and methodological considerations for studies aimed at addressing them.

5.
Brain Res ; 1723: 146425, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31473223

RESUMO

Cocaine and ethanol are two commonly co-abused substances; however, the neuropathology following chronic dual consumption is poorly understood. Neural stem cells (NSCs) are a subpopulation of cells within the adult brain that are integral to brain maintenance and repair making them an appealing target to reverse neurodegeneration associated with abused substances. Yet, knowledge about NSC response to chronic poly-drug administration of ethanol and cocaine is minimal. Here, we developed a novel chronic poly-drug administration paradigm of ethanol and cocaine using a transgenic mouse model to trace endogenous NSC survival and differentiation in three brain regions from both male and female mice. We report significant and distinct patterns of NSC survival and differentiation among brain regions, as well as between sexes. Additionally, poly-drug administration had synergistic effects on NSC survival. Altered cognitive and hedonic behaviors were also observed, however the extent of these behavioral changes was not proportional to the NSC changes. With this mouse model we can effectively examine cognitive and behavioral changes and correlate them with pathological changes in the brain in response to chronic poly-drug administration, which is of great value in understanding the progression of neurodegeneration in polysubstance use disorders and evaluation potential therapeutics on neuroregeneration.


Assuntos
Cocaína/efeitos adversos , Etanol/efeitos adversos , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Adultas/efeitos dos fármacos , Fatores Etários , Animais , Encéfalo/patologia , Diferenciação Celular/efeitos dos fármacos , Cocaína/metabolismo , Cocaína/farmacologia , Modelos Animais de Doenças , Etanol/metabolismo , Etanol/farmacologia , Feminino , Hipocampo/patologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regeneração Nervosa/efeitos dos fármacos , Neurogênese/fisiologia , Fatores Sexuais
6.
Front Aging Neurosci ; 11: 38, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30930764

RESUMO

A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors in a process termed neurogenesis. Adult neurogenesis is limited to specific brain regions in the mammalian brain, such as the subgranular zone (SGZ) of the hippocampus. Alterations in adult neurogenesis appear to be a common hallmark in different neurodegenerative diseases including Alzheimer's disease (AD). We and others have shown that PPARγ agonism improves cognition in preclinical models of AD as well as in several pilot clinical trials. Context discrimination is recognized as a cognitive task supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus that we and others have previously shown declines with age. We therefore postulated that PPARγ agonism would positively impact context discrimination in middle-aged mice via mechanisms that influence proliferation and differentiation of adult-born neurons arising from the SGZ. To achieve our objective, 8-months old mice were left untreated or treated with the FDA-approved PPARγ agonist, rosiglitazone then tested for context discrimination learning and memory, followed by immunofluorescence evaluation of hippocampal SGZ cell proliferation and neuron survival. We found that PPARγ agonism enhanced context discrimination performance in middle-aged mice concomitant with stimulated SGZ cell proliferation, but not new neuron survival. Focal cranial irradiation that destroys neurogenesis severely compromised context discrimination in middle-aged mice yet rosiglitazone treatment significantly improved cognitive performance through an anti-inflammatory mechanism and resurrection of the neurogenic niche. Thus, we have evidence for divergent mechanisms by which PPARγ agonism impinges upon aging-related versus cranial irradiation-induced deficits in context discrimination learning and memory.

7.
Exp Neurol ; 295: 1-17, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28522250

RESUMO

BACKGROUND: Cognitive impairment in humans with Alzheimer's disease (AD) and in animal models of Aß-pathology can be ameliorated by treatments with the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARγ) agonists, such as rosiglitazone (RSG). Previously, we demonstrated that in the Tg2576 animal model of AD, RSG treatment rescued cognitive deficits and reduced aberrant activity of granule neurons in the dentate gyrus (DG), an area critical for memory formation. METHODS: We used a combination of mass spectrometry, confocal imaging, electrophysiology and split-luciferase assay and in vitro phosphorylation and Ingenuity Pathway Analysis. RESULTS: Using an unbiased, quantitative nano-LC-MS/MS screening, we searched for potential molecular targets of the RSG-dependent rescue of DG granule neurons. We found that S226 phosphorylation of fibroblast growth factor 14 (FGF14), an accessory protein of the voltage-gated Na+ (Nav) channels required for neuronal firing, was reduced in Tg2576 mice upon treatment with RSG. Using confocal microscopy, we confirmed that the Tg2576 condition decreased PanNav channels at the AIS of the DG, and that RSG treatment of Tg2576 mice reversed the reduction in PanNav channels. Analysis from previously published data sets identified correlative changes in action potential kinetics in RSG-treated T2576 compared to untreated and wildtype controls. In vitro phosphorylation and mass spectrometry confirmed that the multifunctional kinase GSK-3ß, a downstream target of insulin signaling highly implicated in AD, phosphorylated FGF14 at S226. Assembly of the FGF14:Nav1.6 channel complex and functional regulation of Nav1.6-mediated currents by FGF14 was impaired by a phosphosilent S226A mutation. Bioinformatics pathway analysis of mass spectrometry and biochemistry data revealed a highly interconnected network encompassing PPARγ, FGF14, SCN8A (Nav 1.6), and the kinases GSK-3 ß, casein kinase 2ß, and ERK1/2. CONCLUSIONS: These results identify FGF14 as a potential PPARγ-sensitive target controlling Aß-induced dysfunctions of neuronal activity in the DG underlying memory loss in early AD.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Fatores de Crescimento de Fibroblastos/efeitos dos fármacos , PPAR gama/agonistas , Sequência de Aminoácidos , Animais , Axônios/metabolismo , Giro Denteado/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/genética , Células HEK293 , Humanos , Resistência à Insulina , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Fosforilação , Rosiglitazona , Canais de Sódio/genética , Canais de Sódio/metabolismo , Tiazolidinedionas/farmacologia
8.
World J Microbiol Biotechnol ; 33(2): 38, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28120308

RESUMO

Atrazine is a widely-used herbicide that can impact non-target organisms in the environment but can be biologically degraded by several types of microorganisms. In this study, the gene atzA, which encodes for the initial step in bacterially-mediated atrazine degradation, was used as an indicator of atrazine pollution in agricultural canals located in Hidalgo County, Texas, USA. The concentration of atrazine and atzA were monitored once per month for 12 months during 2010-2011. Atrazine was measured using an enzyme-linked immunosorbent assay; atzA abundance was monitored using Quantitative Polymerase Chain Reaction (Q-PCR) analyses. Abundance of atrazine and atzA were compared with rainy versus dry months and during planting versus non-planting months. Results showed that atrazine levels varied from below detection to 0.43 ppb and were not influenced by precipitation or planting season. Concentrations of the gene atzA were significantly different in rainy versus dry months; during planting versus non-planting times of the year; and in the interaction of precipitation and planting season. The highest concentration of atzA, approx. 4.57 × 108 gene copies ml-1, was detected in July 2010-a rainy, planting month in Hidalgo County, South Texas. However, atrazine was below detection during that month. We conclude that Q-PCR using atzA as an indicator gene is a potential method for monitoring low levels of atrazine pollution in environmental samples.


Assuntos
Atrazina/análise , Proteínas de Bactérias/genética , Água/química , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Reação em Cadeia da Polimerase em Tempo Real , Estações do Ano , Texas
9.
Behav Brain Res ; 322(Pt B): 212-222, 2017 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-27765672

RESUMO

A major aspect of mammalian aging is the decline in functional competence of many self-renewing cell types, including adult-born neuronal precursors. Since age-related senescence of self-renewal occurs simultaneously with chronic up-regulation of the p38MAPKalpha (p38α) signaling pathway, we used the dominant negative mouse model for attenuated p38α activity (DN-p38αAF/+) in which Thr180 and Tyr182 are mutated (T→A/Y→F) to prevent phosphorylation activation (DN-p38αAF/+) and kinase activity. As a result, aged DN-p38αAF/+ mice are resistant to age-dependent decline in proliferation and regeneration of several peripheral tissue progenitors when compared to wild-type littermates. Aging is the major risk factor for non-inherited forms of Alzheimer's disease (AD); environmental and genetic risk factors that accelerate the senescence phenotype are thought to contribute to an individual's relative risk. In the present study, we evaluated aged DN-p38αAF/+ and wildtype littermates in a series of behavioral paradigms to test if p38α mutant mice exhibit altered baseline abnormalities in neurological reflexes, locomotion, anxiety-like behavior, and age-dependent cognitive decline. While aged DN-p38αAF/+ and wildtype littermates appear equal in all tested baseline neurological and behavioral parameters, DN-p38αAF/+ exhibit superior context discrimination fear conditioning. Context discrimination is a cognitive task that is supported by proliferation and differentiation of adult-born neurons in the dentate gyrus of the hippocampus. Consistent with enhanced context discrimination in aged DN-p38αAF/+, we discovered enhanced production of adult-born neurons in the dentate gyrus of DN-p38αAF/+ mice compared to wildtype littermates. Our findings support the notion that p38α inhibition has therapeutic utility in aging diseases that affect cognition, such as AD.


Assuntos
Envelhecimento/metabolismo , Envelhecimento/psicologia , Discriminação Psicológica/fisiologia , Medo/fisiologia , Proteína Quinase 14 Ativada por Mitógeno/deficiência , Neurogênese/fisiologia , Envelhecimento/patologia , Análise de Variância , Animais , Ansiedade/enzimologia , Ansiedade/patologia , Condicionamento Psicológico/fisiologia , Eletrochoque , Comportamento Exploratório/fisiologia , Medo/psicologia , Feminino , Reação de Congelamento Cataléptica/fisiologia , Hipocampo/enzimologia , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Quinase 14 Ativada por Mitógeno/genética , Neurônios/enzimologia , Neurônios/patologia , Testes Psicológicos
10.
Inhal Toxicol ; 29(12-14): 598-610, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29405081

RESUMO

CONTEXT: Acute inhalation of combustion smoke triggers neurologic sequelae in survivors. Due to the challenges posed by heterogeneity of smoke exposures in humans, mechanistic links between acute smoke inhalation and neuropathologic sequelae have not been systematically investigated. METHODS: Here, using mouse model of acute inhalation of combustion smoke, we studied longitudinal neurobehavioral manifestations of smoke exposures and molecular/cellular changes in the mouse brain. RESULTS: Immunohistochemical analyses at eight months post-smoke, revealed hippocampal astrogliosis and microgliosis accompanied by reduced myelination. Elevated expression of proinflammatory cytokines was also detected. Longitudinal testing in different neurobehavioral paradigms in the course of post-smoke recovery, revealed lasting anxiety-like behavior. The examined paradigms included the open field exploration/anxiety testing at two, four and six months post-smoke, which detected decreases in total distance traveled and time spent in the central arena in the smoke-exposed compared to sham-control mice, suggestive of dampened exploratory activity and increased anxiety-like behavior. In agreement with reduced open field activity, cued fear conditioning test revealed increased freezing in response to conditioned auditory stimulus in mice after acute smoke inhalation. Similarly, elevated plus maze testing demonstrated lesser presence in open arms of the maze, consistent with anxiety-like behavior, for the post-smoke exposure mice. CONCLUSIONS: Taken together, our data demonstrate for the first time persistent neurobehavioral manifestations of acute inhalation of combustion smoke and provide new insights into long-term progression of events initiated by disrupted brain oxygenation that might contribute to lasting adverse sequelae in survivors of smoke inhalation injuries.


Assuntos
Ansiedade/induzido quimicamente , Ansiedade/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Lesão por Inalação de Fumaça/metabolismo , Animais , Ansiedade/psicologia , Comportamento Exploratório/fisiologia , Medo/efeitos dos fármacos , Medo/fisiologia , Medo/psicologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/psicologia , Estudos Longitudinais , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Distribuição Aleatória , Fumaça/efeitos adversos , Lesão por Inalação de Fumaça/psicologia
11.
J Physiol ; 592(15): 3201-14, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24879866

RESUMO

There is much interest in α7 nicotinic acetylcholine receptors (nAChRs) in CNS function since they are found throughout peripheral tissues as well as being highly expressed in brain regions implicated in attention, learning and memory. As such, the role of these receptors in many aspects of CNS function and disease is being actively investigated. To date, only one null mouse model (A7KO) is available which is non-conditional and constitutive. Since α7 nAChRs are present on neurons and glia (including astrocytes), as well as being developmentally regulated, there is an unmet need for the technical capability to control α7 nAChR gene expression. Therefore we have generated mice in which the fourth exon of the α7 nAChR gene (Chrna7) is flanked by loxP sites (B6-Chrna7(LBDEx4007Ehs)) which we refer to as floxed α7 nAChR conditional knockout or α7nAChR(flox). We validated the chosen approach by mating α7nAChR(flox) with mice expressing Cre recombinase driven by the glial acidic fibrillary protein (GFAP)-Cre promoter (GFAP-A7KO) to test whether α7nAChR(flox), GFAP-A7KO and appropriate littermate controls performed equally in our standard Rodent In Vivo Assessment Core battery to assess general health, locomotion, emotional and cognitive behaviours. Neither α7nAChR(flox) nor GFAP-A7KO exhibited significant differences from littermate controls in any of the baseline behavioural assessments we conducted, similar to the 'first generation' non-conditional A7KO mice. We also determined that α7 nAChR binding sites were absent on GFAP-positive astrocytes in hippocampal slices obtained from GFAP-A7KO offspring from α7nAChR(flox) and GFAP-Cre crosses. Finally, we validated that Cre recombinase (Cre)-mediated excision led to functional, cell- and tissue-specific loss of α7 nAChRs by demonstrating that choline-induced α7 nAChR currents were present in Cre-negative, but not synapsin promoter-driven Cre-positive, CA1 pyramidal neurons. Additionally, electrophysiological characterization of α7 nAChR-mediated current traces was similar in terms of amplitude and time constants of decay (during desensitization) for the α7nAChR(flox) and wild-type (WT) mice. Thus, we have in vivo and in vitro evidence that the Chrna7 exon 4 targeting strategy does not alter behavioural, cognitive, or electrophysiological properties compared to WT and that Cre-mediated excision is an effective approach to delete α7 nAChR expression in a cell-specific manner.


Assuntos
Marcação de Genes/métodos , Neurônios/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Potenciais de Ação , Animais , Astrócitos/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Éxons , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Integrases/genética , Integrases/metabolismo , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Fenótipo , Regiões Promotoras Genéticas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...