Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
HardwareX ; 12: e00348, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36105917

RESUMO

The incorporation of sophisticated capabilities within microfluidic devices often requires the assembly of different layers in a correct arrangement. For example, when it is desired to include electrodes inside microfluidic channels or to create 3D microfluidic structures. However, the alignment between different substrates at the microscale requires expensive equipment not available for all research groups. In this work, we present an affordable, compact and portable aligner for assembling multilayered composite microfluidic chips. The instrument is composed of aluminum machined pieces combined with precision stages and includes a digital microscope with a LED illumination system for monitoring the alignment process. An interchangeable holder was created for substrate fixing, allowing the bonding of PDMS with other materials. Microscopic visualization is achieved through any device with internet access, avoiding the need of a computer attached to the aligner. To test the performance of the aligner, the center of an indium tin oxide microelectrode on a glass substrate was aligned with the center of a microchannel in a PDMS chip. The accuracy and precision of the instrument are suited for many microfluidic applications. The small and inexpensive design of the aligner makes it a cost-effective option for small groups working in microfluidics.

2.
Phys Chem Chem Phys ; 21(33): 18119-18127, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31403633

RESUMO

The ultrafast dynamics of unsubstituted spironaphthopyran (SNP) were investigated using femtosecond transient UV and visible absorption spectroscopy in three different solvents and by semi-classical nuclear dynamics simulations. The primary ring-opening of the pyran unit was found to occur in 300 fs yielding a non-planar intermediate in the first singlet excited state (S1). Subsequent planarisation and relaxation to the product ground state proceed through barrier crossing on the S1 potential energy surface (PES) and take place within 1.1 ps after excitation. Simulations show that more than 90% of the trajectories involving C-O bond elongation lead to the planar, open-ring product, while relaxation back to the S0 of the closed-ring form is accompanied by C-N elongation. All ensuing spectral dynamics are ascribed to vibrational relaxation and thermalisation of the product with a time constant of 13 ps. The latter shows dependency on characteristics of the solvent with solvent relaxation kinetics playing a role.

3.
Nat Chem ; 9(6): 516-522, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28537597

RESUMO

Solid-state reactions are influenced by the spatial arrangement of the reactants and the electrostatic environment of the lattice, which may enable lattice-directed chemical dynamics. Unlike the caging imposed by an inert matrix, an active lattice participates in the reaction, however, little evidence of such lattice participation has been gathered on ultrafast timescales due to the irreversibility of solid-state chemical systems. Here, by lowering the temperature to 80 K, we have been able to study the dissociative photochemistry of the triiodide anion (I3-) in single-crystal tetra-n-butylammonium triiodide using broadband transient absorption spectroscopy. We identified the coherently formed tetraiodide radical anion (I4•-) as a reaction intermediate. Its delayed appearance after that of the primary photoproduct, diiodide radical I2•-, indicates that I4•- was formed via a secondary reaction between a dissociated iodine radical (I•) and an adjacent I3-. This chemistry occurs as a result of the intermolecular interaction determined by the crystalline arrangement and is in stark contrast with previous solution studies.

4.
Science ; 350(6267): 1501-5, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26680192

RESUMO

Correlated electron systems can undergo ultrafast photoinduced phase transitions involving concerted transformations of electronic and lattice structure. Understanding these phenomena requires identifying the key structural modes that couple to the electronic states. We report the ultrafast photoresponse of the molecular crystal Me4P[Pt(dmit)2]2, which exhibits a photoinduced charge transfer similar to transitions between thermally accessible states, and demonstrate how femtosecond electron diffraction can be applied to directly observe the associated molecular motions. Even for such a complex system, the key large-amplitude modes can be identified by eye and involve a dimer expansion and a librational mode. The dynamics are consistent with the time-resolved optical study, revealing how the electronic, molecular, and lattice structures together facilitate ultrafast switching of the state.

5.
Langmuir ; 30(7): 1820-6, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24479895

RESUMO

The self-assembly of thiomalic acid (TMA) on Au(111) and on preformed Au nanoparticles (AuNPs) protected by weak ligands has been studied by X-ray photoelectron spectroscopy (XPS) and electrochemical techniques. Results show that TMA is adsorbed on the Au(111) surface as thiolate species with a small amount of atomic sulfur (∼10%) and a surface coverage lower than that found for alkanethiols due to steric factors. The amount of atomic sulfur markedly increases when the TMA is adsorbed on AuNPs by the ligand exchange method. We propose that the atomic sulfur is produced as a consequence of C-S bond cleavage, a process that is more favorable at defective sites of the AuNPs surface. The bond scission is also assisted by the presence of the electron-withdrawing carboxy moiety in the α-position relative to the C-S bond. Moreover, the high local concentration of positively charged species increases the stability of the negatively charged leaving group, leading to a higher amount of coadsorbed atomic sulfur. Our results demonstrate that the terminal functionalities of thiols are conditioning factors in the final structure and composition of the adlayers.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Tiomalatos/química , Adsorção , Estrutura Molecular , Propriedades de Superfície
6.
Acc Chem Res ; 45(8): 1183-92, 2012 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-22444437

RESUMO

Over the last three decades, self-assembled molecular films on solid surfaces have attracted widespread interest as an intellectual and technological challenge to chemists, physicists, materials scientists, and biologists. A variety of technological applications of nanotechnology rely on the possibility of controlling topological, chemical, and functional features at the molecular level. Self-assembled monolayers (SAMs) composed of chemisorbed species represent fundamental building blocks for creating complex structures by a bottom-up approach. These materials take advantage of the flexibility of organic and supramolecular chemistry to generate synthetic surfaces with well-defined chemical and physical properties. These films already serve as structural or functional parts of sensors, biosensors, drug-delivery systems, molecular electronic devices, protecting capping for nanostructures, and coatings for corrosion protection and tribological applications. Thiol SAMs on gold are the most popular molecular films because the resulting oxide-free, clean, flat surfaces can be easily modified both in the gas phase and in liquid media under ambient conditions. In particular, researchers have extensively studied SAMs on Au(111) because they serve as model systems to understand the basic aspects of the self-assembly of organic molecules on well-defined metal surfaces. Also, great interest has arisen in the surface structure of thiol-capped gold nanoparticles (AuNPs) because of simple synthesis methods that produce highly monodisperse particles with controllable size and a high surface/volume ratio. These features make AuNPs very attractive for technological applications in fields ranging from medicine to heterogeneous catalysis. In many applications, the structure and chemistry of the sulfur-gold interface become crucial since they control the system properties. Therefore, many researchers have focused on understanding of the nature of this interface on both planar and nanoparticle thiol-covered surfaces. However, despite the considerable theoretical and experimental efforts made using various sophisticated techniques, the structure and chemical composition of the sulfur-gold interface at the atomic level remains elusive. In particular, the search for a unified model of the chemistry of the S-Au interface illustrates the difficulty of determining the surface chemistry at the nanoscale. This Account provides a state-of-the-art analysis of this problem and raises some questions that deserve further investigation.


Assuntos
Ouro/química , Modelos Moleculares , Enxofre/química , Nanopartículas Metálicas/química , Compostos de Sulfidrila/química , Propriedades de Superfície
7.
Langmuir ; 26(18): 14655-62, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20726614

RESUMO

This paper presents a theoretical study of the surface structures and thermodynamic stability of different thiol and sulfide structures present on the palladium surface as a function of the chemical potential of the thiol species. It has been found that as the chemical potential of the thiol is increased, the initially clean palladium surface is covered by a (√3 × âˆš3)R30° sulfur lattice. Further increase in the thiol pressure or concentration leads to the formation of a denser (√7 × âˆš7)R19.1° sulfur lattice, which finally undergoes a phase transition to form a complex (√7 × âˆš7)R19.1° sulfur + thiol adlayer (3/7 sulfur + 2/7 thiol coverage). This transition is accompanied by a strong reconstruction of the Pd(111) surface. The formation of these surface structures has been explained in terms of the catalytic properties of the palladium surface. These results have been compared with X-ray photoelectron spectroscopy results obtained for thiols adsorbed on different palladium surfaces.

8.
ACS Nano ; 4(6): 3413-21, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20459111

RESUMO

In this paper, the synthesis of gold at gold(I)-thiolate core at shell nanoparticles is described for the first time. The chemical nature and structure of these nanoparticles were characterized by a multi-technique approach. The prepared particles consist of gold metallic cores, about 1 nm in size, surrounded by stable gold(I)-thiomalate shells (Au at Au(I)-TM). These nanoparticles could be useful in medicine due to the interesting properties that gold(I)-thiomalate has against rheumatoid arthritis. Furthermore, the described results give new insights in the synthesis and characterization of metallic and core at shell nanoparticles.


Assuntos
Cristalização/métodos , Tiomalato Sódico de Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...