Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 8(2): e0000323, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36853051

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterium, which undergoes a biphasic developmental cycle inside a vacuole termed the inclusion. Chlamydia-specific effector proteins embedded into the inclusion membrane, the Inc proteins, facilitate inclusion interaction with cellular organelles. A subset of Inc proteins engages with specific host factors at the endoplasmic reticulum (ER)-inclusion membrane contact site (MCS), which is a discrete point of contact between the inclusion membrane and the endoplasmic reticulum (ER). Here, we report that the C. trachomatis Inc protein CTL0402/IncSCt is a novel component of the ER-inclusion MCS that specifically interacts with and recruits STIM1, a previously identified host component of the ER-inclusion MCS with an unassigned interacting partner at the inclusion membrane. In comparison, the Chlamydia muridarum IncS homologue (TC0424/IncSCm) does not interact with or recruit STIM1 to the inclusion, indicating species specificity. To further investigate IncS function and overcome the recently reported early developmental defect of the incS mutant, we achieved temporal complementation by expressing IncS exclusively during the early stages of the developmental cycle. Additionally, we used allelic exchange to replace the incSCt open reading frame with incSCm in the C. trachomatis chromosome. Inclusions harboring either of these strains progressed through the developmental cycle but were STIM1 negative and displayed increased inclusion lysis 48 h postinfection. Expression of incSCt in trans complemented these phenotypes. Altogether, our results indicate that IncS is necessary and sufficient to recruit STIM1 to C. trachomatis inclusion and that IncS plays an early developmental role conserved in C. trachomatis and C. muridarum and a late role in inclusion stability specific to C. trachomatis. IMPORTANCE Obligate intracellular pathogens strictly rely on the host for replication. Specialized pathogen-encoded effector proteins play a central role in sophisticated mechanisms of host cell manipulation. In Chlamydia, a subset of these effector proteins, the inclusion membrane proteins, are embedded in the membrane of the vacuole in which the bacteria replicate. Chlamydia encodes 50 to 100 putative Inc proteins. Many are conserved among species, including the human and mouse pathogens Chlamydia trachomatis and Chlamydia muridarum, respectively. However, whether the function(s) of Inc proteins is indeed conserved among species is poorly understood. Here, we characterized the function of the Inc protein IncS conserved in C. trachomatis and C. muridarum. Our work reveals that a single effector protein can play multiple functions at various stages of the developmental cycle. However, these functions are not necessarily conserved across species, suggesting a complex evolutionary path among Chlamydia species.


Assuntos
Chlamydia muridarum , Chlamydia trachomatis , Humanos , Animais , Camundongos , Chlamydia trachomatis/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Chlamydia muridarum/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/metabolismo
2.
PLoS Pathog ; 18(9): e1010818, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36084160

RESUMO

All Chlamydia species are obligate intracellular bacteria that undergo a unique biphasic developmental cycle strictly in the lumen of a membrane bound compartment, the inclusion. Chlamydia specific Type III secreted effectors, known as inclusion membrane proteins (Inc), are embedded into the inclusion membrane. Progression through the developmental cycle, in particular early events of conversion from infectious (EB) to replicative (RB) bacteria, is important for intracellular replication, but poorly understood. Here, we identified the inclusion membrane protein IncS as a critical factor for Chlamydia development. We show that a C. trachomatis conditional mutant is impaired in transition from EB to RB in human cells, and C. muridarum mutant bacteria fail to develop in a mouse model of Chlamydia infection. Thus, IncS represents a promising target for therapeutic intervention of the leading cause of sexually transmitted infections of bacterial origin.


Assuntos
Infecções por Chlamydia , Regulação Bacteriana da Expressão Gênica , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos
3.
PLoS One ; 14(6): e0217753, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31170215

RESUMO

Chlamydia trachomatis infections are the leading cause of sexually transmitted infections of bacterial origin. Lower genital tract infections are often asymptomatic, and therefore left untreated, leading to ascending infections that have long-term consequences on female reproductive health. Human pathology can be recapitulated in mice with the mouse adapted strain C. muridarum. Eight years into the post-genetic era, significant advances to expand the Chlamydia genetic toolbox have been made to facilitate the study of this important human pathogen. However, the need for additional tools remains, especially for C. muridarum. Here, we describe a new set of spectinomycin resistant E. coli-Chlamydia shuttle vectors, for C. trachomatis and C. muridarum. These versatile vectors allow for expression and localization studies of Chlamydia effectors, such as Inc proteins, and will be instrumental for mutant complementation studies. In addition, we have exploited the differential expression of specific Chlamydia genes during the developmental cycle to engineer an omcA::gfp fluorescent transcriptional reporter. This novel tool allows for monitoring RB to EB conversion at the bacterial level. Spatiotemporal tracking of GFP expression within individual inclusions revealed that RB to EB conversion initiates in bacteria located at the edge of the inclusion and correlates with the time post initiation of bacterial replication and inclusion size. Comparison between primary and secondary inclusions potentially suggests that the environment in which the inclusions develop influences the timing of conversion. Altogether, the Chlamydia genetic tools described here will benefit the field, as we continue to investigate the molecular mechanisms underlying Chlamydia-host interaction and pathogenesis.


Assuntos
Chlamydia muridarum/patogenicidade , Chlamydia trachomatis/patogenicidade , Farmacorresistência Bacteriana/efeitos dos fármacos , Corantes Fluorescentes/metabolismo , Genes Reporter , Vetores Genéticos/metabolismo , Espectinomicina/farmacologia , Transcrição Gênica , Animais , Chlamydia muridarum/efeitos dos fármacos , Chlamydia trachomatis/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Nucleotídeos/genética , Fases de Leitura Aberta/genética , Transcrição Gênica/efeitos dos fármacos
4.
Toxicol Lett ; 295: 357-368, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30040983

RESUMO

Heme Oxygenase-1 (HO-1), a stress- responsive enzyme which catalyzes heme degradation into iron, carbon monoxide, and biliverdin, exerts a neuroprotective role involving many different signaling pathways. In Parkinson disease patients, elevated HO-1 expression levels in astrocytes are involved in antioxidant defense. In the present work, employing an in vitro model of Mn2+-induced Parkinsonism in astroglial C6 cells, we investigated the role of HO-1 in both apoptosis and mitochondrial quality control (MQC). HO-1 exerted a protective effect against Mn2+ injury. In fact, HO-1 decreased both intracellular and mitochondrial reactive oxygen species as well as the appearance of apoptotic features. Considering that Mn2+ induces mitochondrial damage and a defective MQC has been implicated in neurodegenerative diseases, we hypothesized that HO-1 could mediate cytoprotection by regulating the MQC processes. Results obtained provide the first evidence that the beneficial effects of HO-1 in astroglial cells are mediated by the maintenance of both mitochondrial fusion/fission and biogenesis/mitophagy balances. Altogether, our data demonstrate a pro-survival function for HO-1 in Mn2+-induced apoptosis that involves the preservation of a proper MQC. These findings point to HO-1 as a new therapeutic target linked to mitochondrial pathophysiology in Manganism and probably Parkinson´s disease.


Assuntos
Astrócitos/efeitos dos fármacos , Cloretos/toxicidade , Heme Oxigenase-1/metabolismo , Intoxicação por Manganês/etiologia , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Animais , Apoptose/efeitos dos fármacos , Astrócitos/enzimologia , Astrócitos/patologia , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Compostos de Manganês , Intoxicação por Manganês/enzimologia , Intoxicação por Manganês/patologia , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Transtornos Parkinsonianos/enzimologia , Transtornos Parkinsonianos/patologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...