Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38823388

RESUMO

The hypoblast is an essential extraembryonic tissue set aside within the inner cell mass in the blastocyst. Research with human embryos is challenging. Thus, stem cell models that reproduce hypoblast differentiation provide valuable alternatives. We show here that human naive pluripotent stem cell (PSC) to hypoblast differentiation proceeds via reversion to a transitional ICM-like state from which the hypoblast emerges in concordance with the trajectory in human blastocysts. We identified a window when fibroblast growth factor (FGF) signaling is critical for hypoblast specification. Revisiting FGF signaling in human embryos revealed that inhibition in the early blastocyst suppresses hypoblast formation. In vitro, the induction of hypoblast is synergistically enhanced by limiting trophectoderm and epiblast fates. This finding revises previous reports and establishes a conservation in lineage specification between mice and humans. Overall, this study demonstrates the utility of human naive PSC-based models in elucidating the mechanistic features of early human embryogenesis.

2.
Biol Open ; 12(9)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37623821

RESUMO

A crucial aspect of embryology is relating the position of individual cells to the broader geometry of the embryo. A classic example of this is the first cell-fate decision of the mouse embryo, where interior cells become inner cell mass and exterior cells become trophectoderm. Fluorescent labelling, imaging, and quantification of tissue-specific proteins have advanced our understanding of this dynamic process. However, instances arise where these markers are either not available, or not reliable, and we are left only with the cells' spatial locations. Therefore, a simple, robust method for classifying interior and exterior cells of an embryo using spatial information is required. Here, we describe a simple mathematical framework and an unsupervised machine learning approach, termed insideOutside, for classifying interior and exterior points of a three-dimensional point-cloud, a common output from imaged cells within the early mouse embryo. We benchmark our method against other published methods to demonstrate that it yields greater accuracy in classification of nuclei from the pre-implantation mouse embryos and greater accuracy when challenged with local surface concavities. We have made MATLAB and Python implementations of the method freely available. This method should prove useful for embryology, with broader applications to similar data arising in the life sciences.


Assuntos
Algoritmos , Disciplinas das Ciências Biológicas , Animais , Camundongos , Núcleo Celular , Blastocisto , Diferenciação Celular
3.
Development ; 150(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102672

RESUMO

Successful human pregnancy depends upon rapid establishment of three founder lineages: the trophectoderm, epiblast and hypoblast, which together form the blastocyst. Each plays an essential role in preparing the embryo for implantation and subsequent development. Several models have been proposed to define the lineage segregation. One suggests that all lineages specify simultaneously; another favours the differentiation of the trophectoderm before separation of the epiblast and hypoblast, either via differentiation of the hypoblast from the established epiblast, or production of both tissues from the inner cell mass precursor. To begin to resolve this discrepancy and thereby understand the sequential process for production of viable human embryos, we investigated the expression order of genes associated with emergence of hypoblast. Based upon published data and immunofluorescence analysis for candidate genes, we present a basic blueprint for human hypoblast differentiation, lending support to the proposed model of sequential segregation of the founder lineages of the human blastocyst. The first characterised marker, specific initially to the early inner cell mass, and subsequently identifying presumptive hypoblast, is PDGFRA, followed by SOX17, FOXA2 and GATA4 in sequence as the hypoblast becomes committed.


Assuntos
Blastocisto , Camadas Germinativas , Gravidez , Feminino , Humanos , Ativação Transcricional , Blastocisto/metabolismo , Camadas Germinativas/metabolismo , Embrião de Mamíferos/metabolismo , Diferenciação Celular , Desenvolvimento Embrionário
4.
Stem Cell Reports ; 18(1): 47-63, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36240776

RESUMO

A major challenge in single-cell gene expression analysis is to discern meaningful cellular heterogeneity from technical or biological noise. To address this challenge, we present entropy sorting (ES), a mathematical framework that distinguishes genes indicative of cell identity. ES achieves this in an unsupervised manner by quantifying if observed correlations between features are more likely to have occurred due to random chance versus a dependent relationship, without the need for any user-defined significance threshold. On synthetic data, we demonstrate the removal of noisy signals to reveal a higher resolution of gene expression patterns than commonly used feature selection methods. We then apply ES to human pre-implantation embryo single-cell RNA sequencing (scRNA-seq) data. Previous studies failed to unambiguously identify early inner cell mass (ICM), suggesting that the human embryo may diverge from the mouse paradigm. In contrast, ES resolves the ICM and reveals sequential lineage bifurcations as in the classical model. ES thus provides a powerful approach for maximizing information extraction from high-dimensional datasets such as scRNA-seq data.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Humanos , Animais , Camundongos , Entropia , Blastocisto/metabolismo , Embrião de Mamíferos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos
6.
Cell ; 185(5): 777-793.e20, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35196500

RESUMO

In development, lineage segregation is coordinated in time and space. An important example is the mammalian inner cell mass, in which the primitive endoderm (PrE, founder of the yolk sac) physically segregates from the epiblast (EPI, founder of the fetus). While the molecular requirements have been well studied, the physical mechanisms determining spatial segregation between EPI and PrE remain elusive. Here, we investigate the mechanical basis of EPI and PrE sorting. We find that rather than the differences in static cell surface mechanical parameters as in classical sorting models, it is the differences in surface fluctuations that robustly ensure physical lineage sorting. These differential surface fluctuations systematically correlate with differential cellular fluidity, which we propose together constitute a non-equilibrium sorting mechanism for EPI and PrE lineages. By combining experiments and modeling, we identify cell surface dynamics as a key factor orchestrating the correct spatial segregation of the founder embryonic lineages.


Assuntos
Blastocisto , Embrião de Mamíferos , Endoderma , Animais , Blastocisto/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Membrana Celular/metabolismo , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Endoderma/metabolismo , Mamíferos , Camundongos , Transporte Proteico
7.
PLoS One ; 15(5): e0233030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32413083

RESUMO

During mammalian blastocyst development, inner cell mass (ICM) cells differentiate into epiblast (Epi) or primitive endoderm (PrE). These two fates are characterized by the expression of the transcription factors NANOG and GATA6, respectively. Here, we investigate the spatio-temporal distribution of NANOG and GATA6 expressing cells in the ICM of the mouse blastocysts with quantitative three-dimensional single cell-based neighbourhood analyses. We define the cell neighbourhood by local features, which include the expression levels of both fate markers expressed in each cell and its neighbours, and the number of neighbouring cells. We further include the position of a cell relative to the centre of the ICM as a global positional feature. Our analyses reveal a local three-dimensional pattern that is already present in early blastocysts: 1) Cells expressing the highest NANOG levels are surrounded by approximately nine neighbours, while 2) cells expressing GATA6 cluster according to their GATA6 levels. This local pattern evolves into a global pattern in the ICM that starts to emerge in mid blastocysts. We show that FGF/MAPK signalling is involved in the three-dimensional distribution of the cells and, using a mutant background, we further show that the GATA6 neighbourhood is regulated by NANOG. Our quantitative study suggests that the three-dimensional cell neighbourhood plays a role in Epi and PrE precursor specification. Our results highlight the importance of analysing the three-dimensional cell neighbourhood while investigating cell fate decisions during early mouse embryonic development.


Assuntos
Blastocisto/citologia , Animais , Biomarcadores/metabolismo , Blastocisto/metabolismo , Massa Celular Interna do Blastocisto/citologia , Massa Celular Interna do Blastocisto/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula , Microambiente Celular , Simulação por Computador , Desenvolvimento Embrionário , Endoderma/citologia , Endoderma/metabolismo , Feminino , Fatores de Crescimento de Fibroblastos/metabolismo , Fator de Transcrição GATA6/metabolismo , Camadas Germinativas/citologia , Camadas Germinativas/metabolismo , Imageamento Tridimensional , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteína Homeobox Nanog/deficiência , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Gravidez
8.
Biophys J ; 116(1): 127-141, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30514631

RESUMO

During mammalian preimplantation, cells of the inner cell mass (ICM) adopt either an embryonic or an extraembryonic fate. This process is tightly regulated in space and time and has been studied previously in mouse embryos and embryonic stem cell models. Current research suggests that cell fates are arranged in a salt-and-pepper pattern of random cell positioning or a spatially alternating pattern. However, the details of the three-dimensional patterns of cell fate specification have not been investigated in the embryo nor in in vitro systems. We developed ICM organoids as a, to our knowledge, novel three-dimensional in vitro stem cell system to model mechanisms of fate decisions that occur in the ICM. ICM organoids show similarities to the in vivo system that arise regardless of the differences in geometry and total cell number. Inspecting ICM organoids and mouse embryos, we describe a so far unknown local clustering of cells with identical fates in both systems. These findings are based on the three-dimensional quantitative analysis of spatiotemporal patterns of NANOG and GATA6 expression in combination with computational rule-based modeling. The pattern identified by our analysis is distinct from the current view of a salt-and-pepper pattern. Our investigation of the spatial distributions both in vivo and in vitro dissects the contributions of the different parts of the embryo to cell fate specifications. In perspective, our combination of quantitative in vivo and in vitro analyses can be extended to other mammalian organisms and thus creates a powerful approach to study embryogenesis.


Assuntos
Diferenciação Celular , Células-Tronco Embrionárias/citologia , Organoides/embriologia , Animais , Agregação Celular , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Fator de Transcrição GATA6/metabolismo , Camundongos , Proteína Homeobox Nanog/metabolismo , Organoides/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...