Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4384, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38782917

RESUMO

Biopolymers such as nucleic acids and proteins exhibit dynamic backbone folding, wherein site-specific intramolecular interactions determine overall structure. Proteins then hierarchically assemble into supramolecular polymers such as microtubules, that are robust yet dynamic, constantly growing or shortening to adjust to cellular needs. The combination of dynamic, energy-driven folding and growth with structural stiffness and length control is difficult to achieve in synthetic polymer self-assembly. Here we show that highly charged, monodisperse DNA-oligomers assemble via seeded growth into length-controlled supramolecular fibers during heating; when the temperature is lowered, these metastable fibers slowly disassemble. Furthermore, the specific molecular structures of oligomers that promote fiber formation contradict the typical theory of block copolymer self-assembly. Efficient curling and packing of the oligomers - or 'curlamers' - determine morphology, rather than hydrophobic to hydrophilic ratio. Addition of a small molecule stabilises the DNA fibers, enabling temporal control of polymer lifetime and underscoring their potential use in nucleic-acid delivery, stimuli-responsive biomaterials, and soft robotics.


Assuntos
DNA , Temperatura Alta , Polímeros , DNA/química , Polímeros/química , Interações Hidrofóbicas e Hidrofílicas
2.
Proc Natl Acad Sci U S A ; 121(21): e2317616121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38743627

RESUMO

The therapeutic targeting of ferroptosis requires full understanding of the molecular mechanism of this regulated cell death pathway. While lipid-derived electrophiles (LDEs), including 4-hydroxy-2-nonenal (4-HNE), are important biomarkers of ferroptosis, a functional role for these highly reactive species in ferroptotic cell death execution has not been established. Here, through mechanistic characterization of LDE-detoxification impairment, we demonstrate that LDEs mediate altered protein function during ferroptosis. Applying live cell fluorescence imaging, we first identified that export of glutathione-LDE-adducts through multidrug resistance-associated protein (MRP) channels is inhibited following exposure to a panel of ferroptosis inducers (FINs) with different modes of action (type I-IV FINs erastin, RSL3, FIN56, and FINO2). This channel inhibition was recreated by both initiation of lipid peroxidation and treatment with 4-HNE. Importantly, treatment with radical-trapping antioxidants prevented impaired LDE-adduct export when working with both FINs and lipid peroxidation initiators but not 4-HNE, pinpointing LDEs as the cause of this inhibited MRP activity observed during ferroptosis. Our findings, when combined with reports of widespread LDE alkylation of key proteins following ferroptosis induction, including MRP1, set a precedent for LDEs as critical mediators of ferroptotic cell damage. Lipid hydroperoxide breakdown to form truncated phospholipids and LDEs may fully explain membrane permeabilization and modified protein function downstream of lipid peroxidation, offering a unified explanation of the molecular cell death mechanism of ferroptosis.


Assuntos
Aldeídos , Ferroptose , Peroxidação de Lipídeos , Ferroptose/efeitos dos fármacos , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Aldeídos/farmacologia , Aldeídos/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Glutationa/metabolismo
3.
J Am Chem Soc ; 145(51): 28124-28136, 2023 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-38095965

RESUMO

Innovative therapeutic approaches are required to battle the rise of antibiotic-resistant bacterial strains. Tapping on reactive oxygen species (ROS) generation in bacteria induced by bactericidal antibiotics, here we report a two-pronged strategy for bacterial inactivation relying on the synergistic combination of a bactericidal antibiotic and newly designed dormant photosensitizers (DoPSs) that activate in the presence of ROS. Intramolecular quenching renders DoPS inert in the presence of light. ROS trapping by DoPS aborts the quenching mechanism unmasking, in equal proportions, singlet oxygen (1O2) sensitization and fluorescence emission. Juxtaposed antioxidant-prooxidant activity built within our DoPS enables (i) initial activation of a few molecules by ROS and (ii) subsequent rapid activation of all DoPS in a bacterium via a domino effect mediated by photogenerated 1O2. Bulk colony forming unit studies employing the minimum inhibitory concentration of the antibiotic illustrate rapid and selective inactivation of Escherichia coli and Pseudomonas aeruginosa only in the presence of light, antibiotic, and DoPS. Single-cell, real-time imaging studies on E. coli reveal an autocatalytic progression of DoPS activation from focal points, providing a unique amplification system for sensing. Single-cell analysis further illustrates the impact of DoPS cellular loading on the rate of DoPS activation and cell death times and on the 1O2 dosing necessary for cell death to occur. Our two-pronged therapy discriminates based on cell metabolites and has the potential to result in lower toxicity, pave the way to reduced drug resistance, and provide insightful mechanistic information about bacterial membrane response to 1O2.


Assuntos
Antibacterianos , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Antibacterianos/farmacologia , Escherichia coli/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bactérias/metabolismo
4.
J Am Chem Soc ; 145(36): 19571-19577, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37658476

RESUMO

Preventing fluorophore photobleaching and unwanted blinking is crucial for single-molecule fluorescence (SMF) studies. Reductants achieve photoprotection via quenching excited triplet states, yet either require counteragents or, for popular alkyl-thiols, are limited to cyanine dye Cy3 protection. Here, we provide mechanistic and imaging results showing that the naturally occurring amino acid ergothioneine and its analogue dramatically enhance photostability for Cy3, Cy5, and their conformationally restrained congeners, providing a biocompatible universal solution for demanding fluorescence imaging.


Assuntos
Ergotioneína , Quinolinas , Aminoácidos , Corantes Fluorescentes , Imidazóis , Ionóforos
5.
Angew Chem Int Ed Engl ; 62(44): e202309869, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37610293

RESUMO

DNA nanotubes (NTs) have attracted extensive interest as artificial cytoskeletons for biomedical, synthetic biology, and materials applications. Here, we report the modular design and assembly of a minimalist yet robust DNA wireframe nanotube with tunable cross-sectional geometry, cavity size, chirality, and length, while using only four DNA strands. We introduce an h-motif structure incorporating double-crossover (DX) tile-like DNA edges to achieve structural rigidity and provide efficient self-assembly of h-motif-based DNA nanotube (H-NT) units, thus producing programmable, micrometer-long nanotubes. We demonstrate control of the H-NT nanotube length via short DNA modulators. Finally, we use an enzyme, RNase H, to take these structures out of equilibrium and trigger nanotube assembly at a physiologically relevant temperature, underlining future cellular applications. The minimalist H-NTs can assemble at near-physiological salt conditions and will serve as an easily synthesized, DNA-economical modular template for biosensors, plasmonics, or other functional materials and as cost-efficient drug-delivery vehicles for biomedical applications.


Assuntos
Técnicas Biossensoriais , Nanotubos , Nanotecnologia , Nanotubos/química , DNA/química , Replicação do DNA
6.
ACS Infect Dis ; 9(8): 1488-1498, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37436367

RESUMO

The hepatitis C virus (HCV) nonstructural protein 5B (NS5B) polymerase catalyzes the replication of the (+) single-stranded RNA genome of HCV. In vitro studies have shown that replication can be performed in the absence of a primer. However, the dynamics and mechanism by which NS5B locates the 3'-terminus of the RNA template to initiate de novo synthesis remain elusive. Here, we performed single-molecule fluorescence studies based on protein-induced fluorescence enhancement reporting on NS5B dynamics on a short model RNA substrate. Our results suggest that NS5B exists in a fully open conformation in solution wherefrom it accesses its binding site along RNA and then closes. Our results revealed two NS5B binding modes: an unstable one resulting in rapid dissociation, and a stable one characterized by a larger residence time on the substrate. We associate these bindings to an unproductive and productive orientation, respectively. Addition of extra mono (Na+)- and divalent (Mg2+) ions increases the mobility of NS5B along its RNA substrate. However, only Mg2+ ions induce a decrease in NS5B residence time. Dwell times of residence increase with the length of the single-stranded template, suggesting that NS5B unbinds its substrate by unthreading the template rather than by spontaneous opening.


Assuntos
Hepacivirus , Hepatite C , Humanos , Hepacivirus/genética , Hepacivirus/metabolismo , Nucleotidiltransferases , RNA Viral/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/metabolismo
7.
Chem Sci ; 14(13): 3470-3481, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37006691

RESUMO

Recently, photochemistry of Electron Donor-Acceptor (EDA) complexes employing catalytic amounts of electron donors have become of interest as a new methodology in the catalysis field, allowing for decoupling of the electron transfer (ET) from the bond-forming event. However, examples of practical EDA systems in the catalytic regime remain scarce, and their mechanism is not yet well-understood. Herein, we report the discovery of an EDA complex between triarylamines and α-perfluorosulfonylpropiophenone reagents, catalyzing C-H perfluoroalkylation of arenes and heteroarenes under visible light irradiation in pH- and redox-neutral conditions. We elucidate the mechanism of this reaction using a detailed photophysical characterization of the EDA complex, the resulting triarylamine radical cation, and its turnover event.

8.
Biochim Biophys Acta Biomembr ; 1865(5): 184155, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37003545

RESUMO

A new decyl chain [-(CH2)9CH3] riboflavin conjugate has been synthesized and investigated. A nucleophilic substitution (SN2) reaction was used for coupling the alkyl chain to riboflavin (Rf), a model natural photosensitizer. As expected, the alkylated compound (decyl-Rf) is significantly more lipophilic than its precursor and efficiently intercalates within phospholipid bilayers, increasing its fluorescence quantum yield. The oxidative damage to lipid membranes photoinduced by decyl-Rf was investigated in large and giant unilamellar vesicles (LUVs and GUVs, respectively) composed of different phospholipids. Using a fluorogenic probe, fast radical formation and singlet oxygen generation was demonstrated upon UVA irradiation in vesicles containing decyl-Rf. Photosensitized formation of conjugated dienes and hydroperoxides, and membrane leakage in LUVs rich in poly-unsaturated fatty acids were also investigated. The overall assessment of the results shows that decyl-Rf is a significantly more efficient photosensitizer of lipids than its unsubstituted precursor and that the association to lipid membranes is key to trigger phospholipid oxidation. Alkylation of hydrophilic photosensitizers as a simple and general synthetic tool to obtain efficient photosensitizers of biomembranes, with potential applications, is discussed.


Assuntos
Fosfolipídeos , Fármacos Fotossensibilizantes , Riboflavina , Lipossomas Unilamelares , Alquilação
9.
Langmuir ; 39(1): 442-452, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36576408

RESUMO

The physical properties of lipid membranes depend on their lipid composition. Photosensitized singlet oxygen (1O2) provides a handle to spatiotemporally control the generation of lipid hydroperoxides via the ene reaction, enabling fundamental studies on membrane dynamics in response to chemical composition changes. Critical to relating the physical properties of the lipid membrane to hydroperoxide formation is the availability of a sensitive reporter to quantify the arrival of 1O2. Here, we show that a fluorogenic α-tocopherol analogue, H4BPMHC, undergoes a >360-fold emission intensity enhancement in liposomes following a reaction with 1O2. Rapid quenching of 1O2 by the probe (kq = 4.9 × 108 M-1 s-1) ensures zero-order kinetics of probe consumption. The remarkable intensity enhancement of H4BPMHC upon 1O2 trapping, its linear temporal behavior, and its protective role in outcompeting membrane damage provide a sensitive and reliable method to quantify the 1O2 flux on lipid membranes. Armed with this probe, fluorescence microscopy studies were devised to enable (i) monitoring the flux of photosensitized 1O2 into giant unilamellar vesicles (GUVs), (ii) establishing the onset of the ene reaction with the double bonds of monounsaturated lipids, and (iii) visualizing the ensuing collective membrane expansion dynamics associated with molecular changes in the lipid structure upon hydroperoxide formation. A correlation was observed between the time for antioxidant H4BPMHC consumption by 1O2 and the onset of membrane fluctuations and surface expansion. Together, our imaging studies with H4BPMHC in GUVs provide a methodology to explore the intimate relationship between photosensitizer activity, chemical insult, membrane morphology, and its collective dynamics.


Assuntos
Oxigênio Singlete , Lipossomas Unilamelares , Lipossomas Unilamelares/química , Peróxido de Hidrogênio , Antioxidantes/química , Lipídeos/química
10.
Chem Sci ; 13(33): 9727-9738, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091918

RESUMO

The central mechanism in ferroptosis linking lipid hydroperoxide accumulation with cell death remains poorly understood. Although lipid hydroperoxides are known to break down to reactive lipid-derived electrophiles (LDEs), the ability of cells to detoxify increasing LDE levels during ferroptosis has not been studied. Here, we developed an assay (ElectrophileQ) correlating the cellular retention vs. excretion of a fluorogenic lipophilic electrophile (AcroB) that enables live-cell assessment of the glutathione-mediated LDE conjugation and adduct export steps of the LDE detoxification pathway. This method revealed that during ferroptosis, LDE detoxification failure occurs through decreased conjugation or export impairment, amplifying cellular electrophile accumulation. Notably, ferroptosis susceptibility was increased following exacerbation of LDE-adduct export impairment through export channel inhibition. Our results expand understanding of the ferroptosis molecular cell death mechanism to position the LDE detoxification pathway as a ferroptosis-relevant therapeutic target. We envision the ElectrophileQ assay becoming an invaluable tool for studying ferroptosis and cellular health.

11.
PLoS Biol ; 20(5): e3001610, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35580139

RESUMO

How double-membraned Gram-negative bacteria overcome lipid peroxidation is virtually unknown. Bactericidal antibiotics and superoxide ion stress stimulate the transcription of the Burkholderia cenocepacia bcnA gene that encodes a secreted lipocalin. bcnA gene orthologs are conserved in bacteria and generally linked to a conserved upstream gene encoding a cytochrome b561 membrane protein (herein named lcoA, lipocalin-associated cytochrome oxidase gene). Mutants in bcnA, lcoA, and in a gene encoding a conserved cytoplasmic aldehyde reductase (peroxidative stress-associated aldehyde reductase gene, psrA) display enhanced membrane lipid peroxidation. Compared to wild type, the levels of the peroxidation biomarker malondialdehyde (MDA) increase in the mutants upon exposure to sublethal concentrations of the bactericidal antibiotics polymyxin B and norfloxacin. Microscopy with lipid peroxidation-sensitive fluorescent probes shows that lipid peroxyl radicals accumulate at the bacterial cell poles and septum and peroxidation is associated with a redistribution of anionic phospholipids and reduced antimicrobial resistance in the mutants. We conclude that BcnA, LcoA, and PsrA are components of an evolutionary conserved, hitherto unrecognized peroxidation detoxification system that protects the bacterial cell envelope from lipid peroxyl radicals.


Assuntos
Aldeído Redutase , Lipídeos de Membrana , Antibacterianos/farmacologia , Bactérias Gram-Negativas , Lipocalinas
12.
ACS Appl Mater Interfaces ; 14(11): 13872-13882, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35266688

RESUMO

Electron-transfer processes in lipid membranes are key to biological functions, yet challenging to study because of the intrinsic heterogeneity of the systems. Here, we report spectro-electrochemical measurements on indium tin oxide-supported lipid bilayers toward the selective induction and sensing of redox processes in membranes. Working at neutral pH with a fluorogenic α-tocopherol analogue, the dynamics of the two-electron oxidation of the chromanol to a chromanone and the rapid thermal decay of the latter to a chromoquinone are recorded as a rapid surge and drop in intensity, respectively. Continuous voltage cycling reveals rapid chromoquinone two-electron, two-proton reduction to dihydrochromoquinone at negative bias, followed by slow regeneration of the former at positive bias. The kinetic parameters of these different transitions are readily obtained as a function of applied potentials. The sensitivity and selectivity afforded by the reported method enables monitoring signals equivalent to femtoampere currents with a high signal-to-background ratio. The study provides a new method to monitor membrane redox processes with high sensitivity and minimal concentrations and unravels key dynamic aspects of α-tocopherol redox chemistry.


Assuntos
Bicamadas Lipídicas , alfa-Tocoferol , Fluorescência , Cinética , Oxirredução
13.
ACS Sens ; 7(1): 166-174, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34985871

RESUMO

We report a chemically tuned fluorogenic electrophile designed to conduct live-cell super-resolution imaging by exploiting its stochastic reversible alkylation reaction with cellular nucleophiles. Consisting of a lipophilic BODIPY fluorophore tethered to an electrophilic cyanoacrylate warhead, the new probe cyanoAcroB remains nonemissive due to internal conversion along the cyanoacrylate moiety. Intermittent fluorescence occurs following thiolate Michael addition to the probe, followed by retro-Michael reaction, tuned by the cyano moiety in the acrylate warhead and BODIPY decoration. This design enables long-term super-resolved imaging of live cells by preventing fluorescent product accumulation and background increase, while preserving the pool of the probe. We demonstrate the imaging capabilities of cyanoAcroB via two methods: (i) single-molecule localization microscopy imaging with nanometer accuracy by stochastic chemical activation and (ii) super-resolution radial fluctuation. The latter tolerates higher probe concentrations and low imaging powers, as it exploits the stochastic adduct dissociation. Super-resolved imaging with cyanoAcroB reveals that electrophile alkylation is prevalent in mitochondria and endoplasmic reticulum. The 2D dynamics of these organelles within a single cell are unraveled with tens of nanometers spatial and sub-second temporal resolution through continuous imaging of cyanoAcroB extending for tens of minutes. Our work underscores the opportunities that reversible fluorogenic probes with bioinspired warheads bring toward illuminating chemical reactions with super-resolved features in live cells.


Assuntos
Corantes Fluorescentes , Mitocôndrias , Cianoacrilatos , Retículo Endoplasmático , Corantes Fluorescentes/química , Microscopia de Fluorescência/métodos
14.
Nat Chem ; 13(9): 843-849, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34373598

RESUMO

Biochemical networks interconnect, grow and evolve to express new properties as different chemical pathways are selected during a continuous cycle of energy consumption and transformation. In contrast, synthetic systems that push away from equilibrium usually return to the same self-assembled state, often generating waste that limits system recyclability and prevents the formation of adaptable networks. Here we show that annealing by slow proton dissipation selects for otherwise inaccessible morphologies of fibres built from DNA and cyanuric acid. Using single-molecule fluorescence microscopy, we observe that proton dissipation influences the growth mechanism of supramolecular polymerization, healing gaps within fibres and converting highly branched, interwoven networks into nanocable superstructures. Just as the growth kinetics of natural fibres determine their structural attributes to modulate function, our system of photoacid-enabled depolymerization and repolymerization selects for healed materials to yield organized, robust fibres. Our method provides a chemical route for error-checking, distinct from thermal annealing, that improves the morphologies and properties of supramolecular materials using out-of-equilibrium systems.


Assuntos
DNA/química , Concentração de Íons de Hidrogênio , Indóis/química , Indóis/efeitos da radiação , Luz , Polimerização/efeitos da radiação , Triazinas/química
15.
J Phys Chem Lett ; 12(27): 6431-6438, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34236197

RESUMO

Organic room temperature phosphorescent (ORTP) compounds have recently emerged as a promising class of emissive materials with a multitude of potential applications. However, the number of building blocks that give rise to efficient ORTP materials is still limited, and the rules for engineering phosphorescent properties in organic solids are not well understood. Here, we report ORTP in a series of N-substituted acridone derivatives with electron-donating, electron-withdrawing, and sterically bulky substituents. X-ray crystallography shows that the solid-state packing varies progressively between coparallel and antiparallel π-stacking and separated π-dimers, depending on the size of the substituent. The detailed photophysical studies supported by DFT calculations reveal complex dynamics of singlet and triplet excited states, depending on the electronic effects of substituents and solid-state packing. The programmable molecular packing provides a lever to control the triplet-triplet annihilation that is manifested as delayed fluorescence in acridone derivatives with continuous (both parallel and antiparallel) π-stacking.


Assuntos
Acridonas/química , Luminescência , Temperatura , Elétrons , Modelos Moleculares , Conformação Molecular
16.
Chem Rev ; 120(23): 12757-12787, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33211489

RESUMO

Our understanding of lipid peroxidation in biology and medicine is rapidly evolving, as it is increasingly implicated in various diseases but also recognized as a key part of normal cell function, signaling, and death (ferroptosis). Not surprisingly, the root and consequences of lipid peroxidation have garnered increasing attention from multiple disciplines in recent years. Here we "connect the dots" between the fundamental chemistry underpinning the cascade reactions of lipid peroxidation (enzymatic or free radical), the reactive nature of the products formed (lipid-derived electrophiles), and the biological targets and mechanisms associated with these products that culminate in cellular responses. We additionally bring light to the use of highly sensitive, fluorescence-based methodologies. Stemming from the foundational concepts in chemistry and biology, these methodologies enable visualizing and quantifying each reaction in the cascade in a cellular and ultimately tissue context, toward deciphering the connections between the chemistry and physiology of lipid peroxidation. The review offers a platform in which the chemistry and biomedical research communities can access a comprehensive summary of fundamental concepts regarding lipid peroxidation, experimental tools for the study of such processes, as well as the recent discoveries by leading investigators with an emphasis on significant open questions.


Assuntos
Doença de Alzheimer/metabolismo , Antioxidantes/metabolismo , Doença de Alzheimer/patologia , Animais , Antioxidantes/química , Radicais Livres/química , Radicais Livres/metabolismo , Humanos , Peroxidação de Lipídeos
17.
ACS Infect Dis ; 6(9): 2468-2477, 2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32786297

RESUMO

The formation of reactive oxygen species (ROS) induced by bactericidal antibiotics has been associated with a common, nonspecific mechanism of cellular death. Herein, we report real-time single-cell fluorescence studies on Escherichia coli stained with a fluorogenic probe for lipid peroxyl radicals showing the generation of this form of ROS when exposed to the minimum inhibitory concentration (MIC) and 10× MIC of the fluoroquinolone antibiotic ciprofloxacin (3 and 30 µM, respectively). Single-cell intensity-time trajectories show an induction period followed by an accelerating phase for cells treated with antibiotic, where initial and maximum intensity achieved following 3.5 h of incubation with antibiotic showed dose-dependent average values. A large fraction of bacteria remains viable after the studies, indicating ROS formation is occurring a priori of cell death. Punctate structures are observed, consistent with membrane blebbing. The addition of a membrane embedding lipid peroxyl radical scavenger, an α-tocopherol analogue, to the media increased the MIC of ciprofloxacin. Lipid peroxyl radical formation precedes E. coli cell death and may be invoked in a cascade event including membrane disruption and consequent cell wall permeabilization. Altogether, our work illustrates that lipid peroxidation is caused by ciprofloxacin in E. coli and suppressed by α-tocopherol analogues. Lipid peroxidation may be invoked in a cascade event including membrane disruption and consequent cell wall permeabilization. Our work provides a methodology to assess antibiotic-induced membrane peroxidation at the single-cell level; this methodology provides opportunities to explore the scope and nature of lipid peroxidation in antibiotic-induced cell lethality.


Assuntos
Antioxidantes , Escherichia coli , Antibacterianos/farmacologia , Corantes Fluorescentes , Fluoroquinolonas , Lipídeos , Peróxidos
18.
J Am Chem Soc ; 142(29): 12681-12689, 2020 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-32594743

RESUMO

Cyanines (Cy3, Cy5, Cy3B) are the most utilized dyes for single-molecule fluorescence and localization-based super-resolution imaging. These modalities exploit cyanines' versatile photochemical behavior with thiols. A mechanism reconciling seemingly divergent results and enabling control over cyanine photoreactivity is however missing. Utilizing single-molecule fluorescence on Cy5 and Cy5B, transient-absorption spectroscopy, and DFT modeling on a range of cyanine dyes, herein we show that photoinduced electron transfer (PeT) from a thiolate to Cy in their triplet excited state and then triplet-to-singlet intersystem crossing in the nascent geminate radical pair are crucial steps. Next, a bifurcation occurs, yielding either back electron transfer and regeneration of ground state Cy, required for photostabilization, or Cy-thiol adduct formation, necessary for super-resolution microscopy. Cy regeneration via photoinduced thiol elimination is favored by adduct absorption spectra broadening. Elimination is also shown to occur through an acid-catalyzed reaction. Overall, our work provides a roadmap for designing fluorophores, photoswitching agents, and triplet excited state quenchers for single-molecule and super-resolution imaging.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Compostos de Sulfidrila/química , Teoria da Densidade Funcional , Estrutura Molecular , Processos Fotoquímicos
19.
Chem Soc Rev ; 49(13): 4220-4233, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32538403

RESUMO

Single molecules can now be visualised with unprecedented precision. As the resolution of single-molecule experiments improves, so too does the breadth, quantity and quality of information that can be extracted using these methodologies. In the field of DNA nanotechnology, we use programmable interactions between nucleic acids to generate complex, multidimensional structures. We can use single-molecule techniques - ranging from electron and fluorescence microscopies to electrical and force spectroscopies - to report on the structure, morphology, robustness, sample heterogeneity and other properties of these DNA nanoconstructs. In this Tutorial Review, we will detail how complementarity between static and dynamic single-molecule techniques can provide a unified image of DNA nanoarchitectures. The single-molecule methods that we discuss provide unprecedented insight into chemical and structural behaviour, yielding not just an average outcome but reporting on the distribution of values, ultimately showing how bulk properties arise from the collective behaviour of individual structures. As the fields of both DNA nanotechnology and single-molecule characterisation intertwine, a feedback loop is generated between disciplines, providing new opportunities for the development and operation of DNA-based materials as sensors, delivery vehicles, machinery and structural scaffolds.


Assuntos
DNA/química , Nanoestruturas/química , Imagem Individual de Molécula/métodos , Técnicas Biossensoriais , Microscopia de Força Atômica , Microscopia Eletrônica , Microscopia de Fluorescência , Conformação de Ácido Nucleico
20.
J Phys Chem Lett ; 11(11): 4462-4480, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32401520

RESUMO

Self-healing dyes have emerged as a new promising class of fluorescent labels. They consist of two units, a fluorescent dye and a photostabilizer. The latter heals whenever the fluorescent dye is in danger of taking a reaction pathway toward photobleaching. We describe the underlying concepts and summarize the developmental history and state-of-the-art, including latest applications in high-resolution microscopy, live-cell, and single-molecule imaging. We further discuss remaining limitations, which are (i) lower photostabilization of most self-healing dyes when compared to solution additives, (ii) limited mechanistic understanding on the influence of the biochemical environment and molecular oxygen on self-healing, and (iii) the lack of cheap and facile bioconjugation strategies. Finally, we provide ideas on how to further advance self-healing dyes, show new data on redox blinking caused by double-stranded DNA, and highlight forthcoming work on intramolecular photostabilization of fluorescent proteins.


Assuntos
Corantes Fluorescentes , DNA , Proteínas Luminescentes , Microscopia de Fluorescência , Fotodegradação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...