Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 13(2): 96, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110528

RESUMO

Replication stress (RS) has a pivotal role in tumor initiation, progression, or therapeutic resistance. In this study, we depicted the mechanism of breast cancer stem cells' (bCSCs) response to RS and its clinical implication. We demonstrated that bCSCs present a limited level of RS compared with non-bCSCs in patient samples. We described for the first time that the spatial nuclear location of BMI1 protein triggers RS response in breast cancers. Hence, in bCSCs, BMI1 is rapidly located to stalled replication forks to recruit RAD51 and activate homologous-recombination machinery, whereas in non-bCSCs BMI1 is trapped on demethylated 1q12 megasatellites precluding effective RS response. We further demonstrated that BMI1/RAD51 axis activation is necessary to prevent cisplatin-induced DNA damage and that treatment of patient-derived xenografts with a RAD51 inhibitor sensitizes tumor-initiating cells to cisplatin. The comprehensive view of replicative-stress response in bCSC has profound implications for understanding and improving therapeutic resistance.


Assuntos
Neoplasias da Mama/patologia , Núcleo Celular/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Complexo Repressor Polycomb 1/metabolismo , Rad51 Recombinase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Recombinação Homóloga , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Complexo Repressor Polycomb 1/antagonistas & inibidores , Rad51 Recombinase/antagonistas & inibidores
2.
FASEB J ; 35(3): e21395, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33566371

RESUMO

Non-alcoholic fatty liver (NAFL) and related syndromes affect one-third of the adult population in industrialized and developing countries. Lifestyle and caloric oversupply are the main causes of such array of disorders, but the molecular mechanisms underlying their etiology remain elusive. Nuclear Protein 1 (NUPR1) expression increases upon cell injury in all organs including liver. Recently, we reported NUPR1 actively participates in the activation of the Unfolded Protein Response (UPR). The UPR typically maintains protein homeostasis, but downstream mediators of the pathway regulate metabolic functions including lipid metabolism. As increases in UPR and NUPR1 in obesity and liver disease have been well documented, the goal of this study was to investigate the roles of NUPR1 in this context. To establish whether NUPR1 is involved in these liver conditions we used patient-derived liver biopsies and in vitro and in vivo NUPR1 loss of functions models. First, we analyzed NUPR1 expression in a cohort of morbidly obese patients (MOPs), with simple fatty liver (NAFL) or more severe steatohepatitis (NASH). Next, we explored the metabolic roles of NUPR1 in wild-type (Nupr1+/+ ) or Nupr1 knockout mice (Nupr1-/- ) fed with a high-fat diet (HFD) for 15 weeks. Immunohistochemical and mRNA analysis revealed NUPR1 expression is inversely correlated to hepatic steatosis progression. Mechanistically, we found NUPR1 participates in the activation of PPAR-α signaling via UPR. As PPAR-α signaling is controlled by UPR, collectively, these findings suggest a novel function for NUPR1 in protecting liver from metabolic distress by controlling lipid homeostasis, possibly through the UPR.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Estresse do Retículo Endoplasmático , Metabolismo dos Lipídeos , Fígado/metabolismo , Proteínas de Neoplasias/fisiologia , Animais , Linhagem Celular Tumoral , Dieta Hiperlipídica , Homeostase , Humanos , Camundongos , Resposta a Proteínas não Dobradas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...