Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 16(15): 7612-7625, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38512302

RESUMO

On-surface synthesis often proceeds under kinetic control due to the irreversibility of key reaction steps, rendering kinetic studies pivotal. The accurate quantification of reaction rates also bears potential for unveiling reaction mechanisms. Temperature-Programmed X-ray Photoelectron Spectroscopy (TP-XPS) has emerged as an analytical tool for kinetic studies with splendid chemical and sufficient temporal resolution. Here, we demonstrate that the common linear temperature ramps lead to fitting ambiguities. Moreover, pinpointing the reaction order remains intricate, although this key parameter entails information on atomistic mechanisms. Yet, TP-XPS experiments with a stepped temperature profile comprised of isothermal segments facilitate the direct quantification of rate constants from fitting time courses. Thereby, rate constants are obtained for a series of temperatures, which allows independent extraction of both activation energies and pre-exponentials from Arrhenius plots. By using two analogous doubly versus triply brominated aromatic model compounds, we found that their debromination on Ag(111) is best modeled by second-order kinetics and thus proceeds via the involvement of a second, non-obvious reactant. Accordingly, we propose that debromination is activated by surface supplied Ag adatoms. This hypothesis is supported by Density Functional Theory (DFT) calculations. We foresee auspicious prospects for this TP-XPS variant for further exploring the kinetics and mechanisms of on-surface reactions.

2.
J Phys Chem C Nanomater Interfaces ; 127(24): 11591-11599, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37377501

RESUMO

The control of molecular structures at the nanoscale plays a critical role in the development of materials and applications. The adsorption of a polyheteroaromatic molecule with hydrogen bond donor and acceptor sites integrated in the conjugated structure itself, namely, benzodi-7-azaindole (BDAI), has been studied on Au(111). Intermolecular hydrogen bonding determines the formation of highly organized linear structures where surface chirality, resulting from the 2D confinement of the centrosymmetric molecules, is observed. Moreover, the structural features of the BDAI molecule lead to the formation of two differentiated arrangements with extended brick-wall and herringbone packing. A comprehensive experimental study that combines scanning tunneling microscopy, high-resolution X-ray photoelectron spectroscopy, near-edge X-ray absorption fine structure spectroscopy, and density functional theory theoretical calculations has been performed to fully characterize the 2D hydrogen-bonded domains and the on-surface thermal stability of the physisorbed material.

3.
Phys Chem Chem Phys ; 24(37): 22960-22970, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36125248

RESUMO

Chemoselective reduction of nitro groups in multifunctional nitroaromatics is a challenging catalytic process with high interest due to the importance of the resulting anilines for the chemical industry. Molecular-level understanding of the ways by which adsorption geometry of nitroaromatics influence their affinity toward nitro reduction will enable the development of highly selective reactions. Herein, taking advantage of the well-ordered self-assembly of para- and ortho-nitrothiophenol (p-NTP and o-NTP, respectively) monolayers on Au(111), we examined the correlation between adsorption geometry and nitro reduction affinity. The anchoring geometry of NTPs and their nitro reduction affinity were determined by conducting polarized X-ray absorption spectroscopy while the influence of NTPs' adsorption geometry on the interaction with the Au surface was analyzed by density functional theory (DFT) calculations. Exposure of surface anchored p-NTPs to reducing conditions led to their reorientation from a tilt angle of 52° to 25°, which enabled strong interactions between the π system of the molecules and the Au surface. Direct correlation was identified between the surface proximity of the nitro group, its parallel position to the surface and the resulting reduction yield. The asymmetric structure of o-NTP led to a tilted adsorption geometry in which the nitro group was rotated away from the plane of the aromatic ring and therefore was positioned parallel and in high proximity to the Au surface. This positioning led to surface-bonding that involved the oxygen atoms of o-NTP. The higher surface proximity and stronger surface interactions of the nitro group in o-NTP enabled nitro reduction already at 180 °C, while in p-NTP nitro reduction was achieved only at 230 °C, due to the longer distance between the NO2 group and the Au surface that led to weaker adsorbate-surface interactions. Thus, parallel positioning of the nitro group and high surface proximity were found as essential descriptors for nitro reduction affinity in both p-NTP and o-NTP on the Au surface. These findings provide explicit guidelines for tuning the reactant and surface properties in order to control the reactant's adsorption geometry for selective nitro reduction in multifunctional nitroaromatics.

4.
J Phys Chem A ; 126(39): 6870-6881, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36168982

RESUMO

The electronic characterization of the cyanuric acid both in gas phase and when embedded within an H-bonded scheme forming a monolayer on the Au(111) surface has been performed by means of X-ray Photoelectron Spectroscopy (XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. The experimental spectra at the N, O, and C K-edges have been assigned with the support of DFT calculations, and the combination between theory and experiment has allowed to us investigate the effect of the H-bonding intermolecular interaction on the spectra. In particular, the H-bond formation in the monolayer leads to a quenching of the N 1s NEXAFS resonances associated with transitions to the sigma empty orbitals localized on the N-H portion of the imide group. On the other hand, the π* empty states remain substantially unperturbed. From a computational point of view, it has been shown that the DFT-TP scheme is not able to describe the N 1s NEXAFS spectra of these systems, and the configuration mixing has to be included, through the TDDFT approach in conjunction with the range-separated XC CAM-B3LYP functional, to obtain a correct reproduction of the N 1s core spectra.

5.
Nanomaterials (Basel) ; 12(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35564319

RESUMO

The electronic properties of 2D boroxine networks are computationally investigated by simulating the NEXAFS spectra of a series of molecular models, with or without morphologic defects, with respect to the ideal honeycomb structure. The models represent portions of an irregular 2D boroxine framework obtained experimentally, as supported by the Au(111) surface. The B K-edge NEXAFS spectra are calculated within the transition potential (TP) approximation (DFT-TP). The role of the Au(111) supporting surface on the spectral features has also been investigated by comparing the calculated spectra of a defect-rich model in its free-standing and supported form. The calculated NEXAFS spectra differ from the experimental ones, as the position of the main resonance does not match in the two cases. This finding could suggest the presence of a strong interaction of the 2D boroxine network with the Au substrate, which is not captured in the model calculations. However, good agreement between measured and calculated B K-edge NEXAFS spectra is obtained for a model system, namely, trihydroxy boroxine, in which the B atoms are less screened by the valence electrons compared to the B-B linked boroxine network models considered here. These results suggest catalytic activity in the gold substrate in promoting a weakening or even the breaking of the B-B bond, which is not revealed by calculations.

6.
Angew Chem Int Ed Engl ; 61(20): e202201916, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35267236

RESUMO

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI - and FeIII -containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.


Assuntos
Níquel , Óxido Nítrico , Cobre , Compostos Férricos , Metais , Oxirredução
7.
J Phys Condens Matter ; 34(27)2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35354128

RESUMO

Due to its biocompatibility, TiO2is a relevant material for the study of bio-interfaces. Its electronic and chemical properties are influenced by defects, which mainly consist of oxygen vacancies or adsorbed OH groups and which affect, consequently, also the interaction with biological molecules. Here we report on an x-ray photoemission spectroscopy and near edge adsorption fine structure study of glutamic acid (Glu) adsorption on the rutile TiO2(110) surface, either clean or partially hydroxylated. We show that Glu anchors to the surface through a carboxylate group and that the final adsorption state is influenced by the presence of hydroxyl groups on the surface prior to Glu deposition. Indeed, molecules adsorb both in the anionic and in the zwitterionic form, the former species being favored on the hydroxylated substrate.


Assuntos
Ácido Glutâmico , Adsorção , Espectroscopia Fotoeletrônica , Propriedades de Superfície , Titânio
8.
J Phys Chem C Nanomater Interfaces ; 126(3): 1635-1643, 2022 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-35116088

RESUMO

In this article, we analyze the electronic structure modifications of triphenylamine (TPA), a well-known electron donor molecule widely used in photovoltaics and optoelectronics, upon deposition on Au(111) at a monolayer coverage. A detailed study was carried out by synchrotron radiation-based photoelectron spectroscopy, near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, scanning tunneling microscopy (STM), and ab initio calculations. We detect a new feature in the pre-edge energy region of the N K-edge NEXAFS spectrum that extends over 3 eV, which we assign to transitions involving new electronic states. According to our calculations, upon adsorption, a number of new unoccupied electronic states fill the energy region between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of the free TPA molecule and give rise to the new feature in the pre-edge region of the NEXAFS spectrum. This finding highlights the occurrence of a considerable modification of the electronic structure of TPA. The appearance of new states in the HOMO-LUMO gap of TPA when adsorbed on Au(111) has crucial implications for the design of molecular nanoelectronic devices based on similar donor systems.

9.
Angew Chem Weinheim Bergstr Ger ; 134(20): e202201916, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38505699

RESUMO

Uncommon metal oxidation states in porphyrinoid cofactors are responsible for the activity of many enzymes. The F430 and P450nor co-factors, with their reduced NiI- and FeIII-containing tetrapyrrolic cores, are prototypical examples of biological systems involved in methane formation and in the reduction of nitric oxide, respectively. Herein, using a comprehensive range of experimental and theoretical methods, we raise evidence that nickel tetraphenyl porphyrins deposited in vacuo on a copper surface are reactive towards nitric oxide disproportionation at room temperature. The interpretation of the measurements is far from being straightforward due to the high reactivity of the different nitrogen oxides species (eventually present in the residual gas background) and of the possible reaction intermediates. The picture is detailed in order to disentangle the challenging complexity of the system, where even a small fraction of contamination can change the scenario.

10.
Small ; 17(50): e2104779, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34643036

RESUMO

Molecular interfaces formed between metals and molecular compounds offer a great potential as building blocks for future opto-electronics and spintronics devices. Here, a combined theoretical and experimental spectro-microscopy approach is used to show that the charge transfer occurring at the interface between nickel tetraphenyl porphyrins and copper changes both spin and oxidation states of the Ni ion from [Ni(II), S = 0] to [Ni(I), S = 1/2]. The chemically active Ni(I), even in a buried multilayer system, can be functionalized with nitrogen dioxide, allowing a selective tuning of the electronic properties of the Ni center that is switched to a [Ni(II), S = 1] state. While Ni acts as a reversible spin switch, it is found that the electronic structure of the macrocycle backbone, where the frontier orbitals are mainly localized, remains unaffected. These findings pave the way for using the present porphyrin-based system as a platform for the realization of multifunctional devices where the magnetism and the optical/transport properties can be controlled simultaneously by independent stimuli.


Assuntos
Porfirinas , Cobre , Metais , Níquel , Temperatura
11.
Langmuir ; 37(33): 10029-10035, 2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34370475

RESUMO

Adsorption of chiral molecules on heterogeneous catalysts is a simple approach for inducing an asymmetric environment to enable enantioselective reactivity. Although the concept of chiral induction is straightforward, its practical utilization is far from simple, and only a few examples toward the successful chiral induction by surface anchoring of asymmetric modifiers have been demonstrated so far. Elucidating the factors that lead to successful chiral induction is therefore a crucial step for understanding the mechanism by which chirality is transferred. Herein, we identify the adsorption geometry of OH-functionalized N-heterocyclic carbenes (NHCs), which are chemical analogues to chiral modifiers that successfully promoted α-arylation reactions once anchored on Pd nanoparticles. Polarized near-edge X-ray absorption fine structure (NEXAFS) measurements on Pd(111) revealed that NHCs that were associated with low enantioselectivity were characterized with a well-ordered structure, in which the imidazole ring was vertically positioned and the OH-functionalized side arms were flat-lying. OH-functionalized NHCs that were associated with high enantioselectivity revealed a disordered/flexible adsorption geometry, which potentially enabled better interaction between the OH group and the prochiral reactant.

12.
ACS Appl Mater Interfaces ; 13(16): 19460-19466, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33871979

RESUMO

Organic photovoltaics (OPVs) technology now offers power conversion efficiency (PCE) of over 18% and is one of the main emerging photovoltaic technologies. In such devices, titanium dioxide (TiOx) has been vastly used as an electron extraction layer, typically showing unwanted charge-extraction barriers and the need for light-soaking. In the present work, using advanced photoemission spectroscopies, we investigate the electronic interplay at the interface between low-temperature-sputtered TiOx and C70 acceptor fullerene molecules. We show that defect states in the band gap of TiOx are quenched by C70 while an interfacial state appears. This new interfacial state is expected to support the favorable energy band alignment observed, showing a perfect match of transport levels, and thus barrier-free extraction of charges, making low-temperature-sputtered TiOx a good candidate for the next generation of organic solar cells.

13.
Nanoscale Adv ; 3(8): 2359-2365, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-36133766

RESUMO

The water-splitting photo-catalysis by carbon nitride heterocycles has been the subject of recent theoretical investigations, revealing a proton-coupled electron transfer (PCET) reaction from the H-bonded water molecule to the CN-heterocycle. In this context, a detailed characterization of the water-catalyst binding configuration becomes mandatory in order to validate and possibly improve the theoretical modeling. To this aim, we built a well-defined surface-supported water/catalyst interface by adsorbing water under ultra-high vacuum (UHV) conditions on a monolayer of melamine grown on the Cu(111) surface. By combining X-ray photoemission (XPS) and absorption (NEXAFS) spectroscopy we observed that melamine adsorbed onto copper is strongly tilted off the surface, with one amino group dangling to the vacuum side. The binding energy (BE) of the corresponding N 1s component is significantly higher compared to other N 1s contributions and displays a clear shift to lower BE as water is adsorbed. This finding along with density functional theory (DFT) results reveals that two adjacent melamine molecules concurrently work for stabilizing the H-bonded water-catalyst complex: one melamine acting as a H-donor via the amino-N (NH⋯OHH) and another one as a H-acceptor via the triazine-N (C[double bond, length as m-dash]N⋯HOH).

14.
Chemistry ; 27(10): 3526-3535, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33264485

RESUMO

Due to its unique magnetic properties offered by the open-shell electronic structure of the central metal ion, and for being an effective catalyst in a wide variety of reactions, iron phthalocyanine has drawn significant interest from the scientific community. Nevertheless, upon surface deposition, the magnetic properties of the molecular layer can be significantly affected by the coupling occurring at the interface, and the more reactive the surface, the stronger is the impact on the spin state. Here, we show that on Cu(100), indeed, the strong hybridization between the Fe d-states of FePc and the sp-band of the copper substrate modifies the charge distribution in the molecule, significantly influencing the magnetic properties of the iron ion. The FeII ion is stabilized in the low singlet spin state (S=0), leading to the complete quenching of the molecule magnetic moment. By exploiting the FePc/Cu(100) interface, we demonstrate that NO2 dissociation can be used to gradually change the magnetic properties of the iron ion, by trimming the gas dosage. For lower doses, the FePc film is decoupled from the copper substrate, restoring the gas phase triplet spin state (S=1). A higher dose induces the transition from ferrous to ferric phthalocyanine, in its intermediate spin state, with enhanced magnetic moment due to the interaction with the atomic ligands. Remarkably, in this way, three different spin configurations have been observed within the same metalorganic/metal interface by exposing it to different doses of NO2 at room temperature.

15.
J Phys Chem C Nanomater Interfaces ; 124(36): 19655-19665, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33163138

RESUMO

We present a comparative study of the room-temperature adsorption of p-aminophenol (p-AP) molecules on three metal surfaces, namely Cu(110), Cu(111) and Pt(111). We show that the chemical nature and the structural symmetry of the substrate control the activation of the terminal molecular groups, which result in different arrangements of the interfacial molecular layer. To this aim, we have used in-situ STM images combined with synchrotron radiation high resolution XPS and NEXAFS spectra, and the results were simulated by DFT calculations. On copper, the interaction between the molecules and the surface is weaker on the (111) surface crystal plane than on the (110) one, favouring molecular diffusion and leading to larger ordered domains. We demonstrate that the p-AP molecule undergoes spontaneous dehydrogenation of the alcohol group to form phenoxy species on all the studied surfaces, however, this process is not complete on the less reactive surface, Cu(111). The Pt(111) surface exhibits stronger molecule-surface interaction, inducing a short-range ordered molecular arrangement that increases overtime. In addition, on the highly reactive Pt(111) surface other chemical processes are evidenced, such as the dehydrogenation of the amine group.

16.
Nanotechnology ; 31(27): 275708, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32235041

RESUMO

Since its discovery, the environmental instability of exfoliated black phosphorus (2D bP) has emerged as a challenge that hampers its wide application in chemistry, physics, and materials science. Many studies have been carried out to overcome this drawback. Here we show a relevant enhancement of ambient stability in few-layer bP decorated with nickel nanoparticles as compared to pristine bP. In detail, the behavior of the Ni-functionalized material exposed to ambient conditions in the dark is accurately studied by Transmission Electron Microscopy (TEM), Raman Spectroscopy, and high resolution x-ray Photoemission and Absorption Spectroscopy. These techniques provide a morphological and quantitative insight of the oxidation process taking place at the surface of the bP flakes. In the presence of Ni nanoparticles (NPs), the decay time of 2D bP to phosphorus oxides is more than three time slower compared to pristine bP, demonstrating an improved structural stability within 20 months of observation.

17.
Chem Commun (Camb) ; 56(19): 2833-2836, 2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32065182

RESUMO

The self-assembly of leucoquinizarin molecules on Au(111) surfaces is shown to be characterized by the molecules mostly being in their keto-enolic tautomeric form, with evidence of their temporary switching to other tautomeric forms. This reveals a metastable chemistry of the assembled molecules, to be considered for their possible employment in the formation of more complex hetero-organic interfaces.

18.
Chem Sci ; 12(6): 2257-2267, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-34163992

RESUMO

Catechols are ubiquitous substances often acting as antioxidants, thus of importance in a variety of biological processes. The Fenton and Haber-Weiss processes are thought to transform these molecules into aggressive reactive oxygen species (ROS), a source of oxidative stress and possibly inducing degenerative diseases. Here, using model conditions (ultrahigh vacuum and single crystals), we unveil another process capable of converting catechols into ROSs, namely an intramolecular redox reaction catalysed by a Cu surface. We focus on a tri-catechol, the hexahydroxytriphenylene molecule, and show that this antioxidant is thereby transformed into a semiquinone, as an intermediate product, and then into an even stronger oxidant, a quinone, as final product. We argue that the transformations occur via two intramolecular redox reactions: since the Cu surface cannot oxidise the molecules, the starting catechol and the semiquinone forms each are, at the same time, self-oxidised and self-reduced. Thanks to these reactions, the quinone and semiquinone are able to interact with the substrate by readily accepting electrons donated by the substrate. Our combined experimental surface science and ab initio analysis highlights the key role played by metal nanoparticles in the development of degenerative diseases.

19.
Langmuir ; 36(3): 697-703, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31762273

RESUMO

Fundamental understanding of the correlation between the structure and reactivity of chemically addressable N-heterocyclic carbene (NHC) molecules on various surfaces is essential for the design of functional NHC-based self-assembled monolayers. In this work, we identified the ways by which the deposition of chemically addressable OH-NHCs on Au(111) or Pt(111) surfaces modified the anchoring geometry and chemical reactivity of surface-anchored NHCs. The properties of surface-anchored NHCs were probed by conducting X-ray photoelectron spectroscopy and polarized near-edge X-ray absorption fine structure measurements. While no preferred orientation was identified for OH-NHCs on Pt(111), the anchored molecules adopted a preferred flat-lying position on Au(111). Dehydrogenation and aromatization of the imidazoline ring along with partial hydroxyl oxidation were detected in OH-NHCs that were anchored on Au(111). The dehydrogenation and aromatization reactions were facilitated, along with partial decomposition, for OH-NHCs that were anchored on Pt(111). The spectroscopic results reveal that stronger metal-adsorbate interactions increase the reactivity of surface-anchored OH-NHCs while decreasing their molecular orientational order.

20.
Chemistry ; 25(66): 15009, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31774940

RESUMO

Invited for the cover of this issue are Elad Gross, F. Dean Toste, and co-workers at The Hebrew University and UC Berkeley. The image depicts the flexible anchoring geometry of addressable carbene molecules on Au surface, which upon exposure to reducing conditions changed their orientation from a standing into a flat-lying position. Read the full text of the article at 10.1002/chem.201903434.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...