Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8373, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102140

RESUMO

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.


Assuntos
Rabdomiossarcoma , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fatores de Transcrição , Transformação Celular Neoplásica , Diferenciação Celular
2.
Front Oncol ; 12: 835642, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574376

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric myogenic soft tissue sarcoma. The Fusion-Positive (FP) subtype expresses the chimeric protein PAX3-FOXO1 (P3F) while the Fusion-Negative (FN) is devoid of any gene translocation. FP-RMS and metastatic FN-RMS are often unresponsive to conventional therapy. Therefore, novel therapeutic approaches are needed to halt tumor progression. NOTCH signaling has oncogenic functions in RMS and its pharmacologic inhibition through γ-secretase inhibitors blocks tumor growth in vitro and in vivo. Here, we show that NOTCH signaling blockade resulted in the up-regulation and phosphorylation of the MET oncogene in both RH30 (FP-RMS) and RD (FN-RMS) cell lines. Pharmacologic inhibition of either NOTCH or MET signaling slowed proliferation and restrained cell survival compared to control cells partly by increasing Annexin V and CASP3/7 activation. Co-treatment with NOTCH and MET inhibitors significantly amplified these effects and enhanced PARP1 cleavage in both cell lines. Moreover, it severely hampered cell migration, colony formation, and anchorage-independent growth compared to single-agent treatments in both cell lines and significantly prevented the growth of FN-RMS cells grown as spheroids. Collectively, our results unveil the overexpression of the MET oncogene by NOTCH signaling targeting in RMS cells and show that MET pathway blockade sensitizes them to NOTCH inhibition.

4.
PLoS One ; 9(7): e101629, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24992257

RESUMO

Mendelian laws provide the universal founding paradigm for the mechanism of genetic inheritance through which characters are segregated and assorted. In recent years, however, parallel with the rapid growth of epigenetic studies, cases of inheritance deviating from Mendelian patterns have emerged. Growing studies underscore phenotypic variations and increased risk of pathologies that are transgenerationally inherited in a non-Mendelian fashion in the absence of any classically identifiable mutation or predisposing genetic lesion in the genome of individuals who develop the disease. Non-Mendelian inheritance is most often transmitted through the germline in consequence of primary events occurring in somatic cells, implying soma-to-germline transmission of information. While studies of sperm cells suggest that epigenetic variations can potentially underlie phenotypic alterations across generations, no instance of transmission of DNA- or RNA-mediated information from somatic to germ cells has been reported as yet. To address these issues, we have now generated a mouse model xenografted with human melanoma cells stably expressing EGFP-encoding plasmid. We find that EGFP RNA is released from the xenografted human cells into the bloodstream and eventually in spermatozoa of the mice. Tumor-released EGFP RNA is associated with an extracellular fraction processed for exosome purification and expressing exosomal markers, in all steps of the process, from the xenografted cancer cells to the spermatozoa of the recipient animals, strongly suggesting that exosomes are the carriers of a flow of information from somatic cells to gametes. Together, these results indicate that somatic RNA is transferred to sperm cells, which can therefore act as the final recipients of somatic cell-derived information.


Assuntos
Exossomos/metabolismo , Neoplasias Experimentais/metabolismo , RNA Neoplásico/metabolismo , Espermatozoides/metabolismo , Animais , Transporte Biológico Ativo , Exossomos/patologia , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Neoplasias Experimentais/patologia , Espermatozoides/patologia
5.
Oncotarget ; 4(12): 2271-87, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24345856

RESUMO

LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the 'normal' small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the transformed state in tumor cells.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , Neoplasias/genética , DNA Polimerase Dirigida por RNA/genética , Diferenciação Celular/genética , Processos de Crescimento Celular/genética , Linhagem Celular Transformada , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Humanos , Melanoma/enzimologia , Melanoma/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/enzimologia , RNA Neoplásico/genética , DNA Polimerase Dirigida por RNA/metabolismo , Inibidores da Transcriptase Reversa/farmacologia , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
6.
Orig Life Evol Biosph ; 41(5): 437-51, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21484535

RESUMO

Mineral components of the Murchison meteorite were investigated in terms of potential catalytic effects on synthetic and hydrolytic reactions related to ribonucleic acid. We found that the mineral surfaces catalyzed condensation reactions of formamide to form carboxylic acids, amino acids, nucleobases and sugar precursors. These results suggest that formamide condensation reactions in the parent bodies of carbonaceous meteorites could give rise to multiple organic compounds thought to be required for the emergence of life. Previous studies have demonstrated similar catalytic effects for mineral assemblies likely to have been present in the early Earth environment. The minerals had little or no effect in promoting hydrolysis of RNA (24mer of polyadenylic acid) at 80°C over a pH range from 4.2 to 9.3. RNA was most stable in the neutral pH range, with a half-life ~5 h, but at higher and lower pH ranges the half-life decreased to ~1 h. These results suggest that if RNA was somehow incorporated into a primitive form of RNA-based thermophilic life, either it must be protected from random hydrolytic events, or the rate of synthesis must exceed the rate of hydrolysis.


Assuntos
Aminoácidos/síntese química , Ácidos Carboxílicos/síntese química , Purinas/síntese química , Pirimidinas/síntese química , Estabilidade de RNA , RNA/química , Carbono/química , Catálise , Planeta Terra , Formamidas , Cromatografia Gasosa-Espectrometria de Massas , Meia-Vida , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Meteoroides , RNA/análise , Água/química
7.
Orig Life Evol Biosph ; 41(4): 317-30, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21424401

RESUMO

The thermal condensation of formamide in the presence of mineral borates is reported. The products afforded are precursors of nucleic acids, amino acids derivatives and carboxylic acids. The efficiency and the selectivity of the reaction was studied in relation to the elemental composition of the 18 minerals analyzed. The possibility of synthesizing at the same time building blocks of both genetic and metabolic apparatuses, along with the production of amino acids, highlights the interest of the formamide/borate system in prebiotic chemistry.


Assuntos
Aminoácidos/síntese química , Boratos/química , Ácidos Carboxílicos/síntese química , Formamidas/química , Minerais/análise , Ácidos Nucleicos/síntese química , Boratos/análise , Carbodi-Imidas/síntese química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Temperatura Alta , Espectroscopia de Ressonância Magnética/métodos , Minerais/química , Estrutura Molecular , Precursores de Ácido Nucleico/síntese química , Polimerização , Purinas/síntese química , Piridinas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...