Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 77: 156-165, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30008405

RESUMO

Where the unique natural water resource is groundwater, the attention and the susceptibility of local communities and authorities to groundwater quality degradation risks can be so high to determine relevant problems to waste management, especially for landfills in operation or to be realised. A multi-methodological approach was suggested with the purpose to clarify the role of landfill leakage on groundwater quality degradation. The selected study area (SSA) hosts some landfills in a narrow portion of a wide and deep coastal karstic aquifer, for these characteristics to be considered a case of high hydrogeological complexity and vulnerability. News concerning nitrate and secondly iron groundwater concentration anomalously high caused concern in the population and strong local opposition to landfills. The multi-methodological approach includes: the hydrogeological site characterization; the chemical study and the multi-isotope characterization of groundwater and leachate; the land use analysis and the estimation of nitrogen contributions deriving from fertilizers; the mineralogical study of groundwater suspended particles to define the role of natural soil substances. The hydrogeological site characterisation highlighted the local peculiarities of the aquifer. The chemical study was used to define geochemical features, groundwater and leachate characteristics and their macroscopic mixing. The environmental isotopes of hydrogen, carbon, nitrogen, and oxygen were used to investigate the groundwater origin, the most relevant geochemical reactions, the existence of groundwater-leachate mixing, and the sources of anthropogenic NO3-. The land use analysis highlighted quantity and type of used fertilizers permitting to compare these with groundwater in terms of isotopic signature. The mineralogical study demonstrated the role of suspend natural particles due the presence of terre rosse (red or residual soils) in groundwater. The approach confirmed that there are not the groundwater quality degradation effects of landfills, contributing to reassure population and institutions, simplifying the waste management.


Assuntos
Água Subterrânea/química , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/química , Monitoramento Ambiental , Itália
2.
J Environ Sci (China) ; 65: 317-326, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29548403

RESUMO

In this study, a top cover system is investigated as a control for emissions during the aftercare of new landfills and for old landfills where biogas energy production might not be profitable. Different materials were studied as landfill cover system in lab-scale columns: mechanical-biological pretreated municipal solid waste (MBP); mechanical-biological pretreated biowaste (PB); fine (PBSf) and coarse (PBSc) mechanical-biological pretreated mixtures of biowaste and sewage sludge, and natural soil (NS). The effectiveness of these materials in removing methane and sulphur compounds from a gas stream was tested, even coupled with activated carbon membranes. Concentrations of CO2, CH4, O2, N2, H2S and mercaptans were analysed at different depths along the columns. Methane degradation was assessed using mass balance and the results were expressed in terms of methane oxidation rate (MOR). The highest maximum and mean MOR were observed for MBP (17.2gCH4/m2/hr and 10.3gCH4/m2/hr, respectively). Similar values were obtained with PB and PBSc. The lowest values of MOR were obtained for NS (6.7gCH4/m2/hr) and PBSf (3.6gCH4/m2/hr), which may be due to their low organic content and void index, respectively. Activated membranes with high load capacity did not seem to have an influence on the methane oxidation process: MBP coupled with 220g/m2 and 360g/m2 membranes gave maximum MOR of 16.5gCH4/m2/hr and 17.4gCH4/m2/hr, respectively. Activated carbon membranes proved to be very effective on H2S adsorption. Furthermore, carbonyl sulphide, ethyl mercaptan and isopropyl mercaptan seemed to be easily absorbed by the filling materials.


Assuntos
Poluentes Atmosféricos/análise , Metano/análise , Eliminação de Resíduos/métodos , Compostos de Enxofre/química , Instalações de Eliminação de Resíduos , Poluentes Atmosféricos/química , Metano/química , Oxirredução , Compostos de Enxofre/análise
3.
Waste Manag ; 75: 372-383, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29395732

RESUMO

The storage capacity and the potentially residual emissions of a stabilized waste coming from a landfill simulation experiment were evaluated. The evolution in time of the potential emissions and the mobility of some selected elements or compounds were determined, comparing the results of the stabilized waste samples with the values detected in the related fresh waste samples. Analyses were conducted for the total bulk waste and also for each identified category (under-sieve, kitchen residues, green and wooden materials, plastics, cellulosic material and textiles) to highlight the contribution of the different waste fractions in the total emission potential. The waste characterization was performed through analyses on solids and on leaching test eluates; the chemical speciation of carbon, nitrogen, chlorine and sulfur together with the partitioning of heavy metals through a SCE procedure were carried out. Results showed that the under-sieve is the most environmentally relevant fraction, hosting a consistent part of mobile compounds in fresh waste (40.7% of carbon, 44.0% of nitrogen, 47.6% of chloride and 40.0% of sulfur) and the greater part of potentially residual emissions in stabilized waste (88.4% of carbon, 90.9% of nitrogen, 98.4% of chloride and 91.1% of sulfur). Landfilled Municipal Solid Waste (MSW) proved to be an effective sink, finally storing more than 55% of carbon, 53% of nitrogen, 33% of sulfur and 90% of heavy metals (HM) which were initially present in fresh waste samples. A general decrease in leachable fractions from fresh to stabilized waste was observed for each category. Tests showed that solid waste is not a good sink for chlorine, whose residual non-mobile fraction amounts to 12.3% only.


Assuntos
Eliminação de Resíduos , Instalações de Eliminação de Resíduos , Metais Pesados/análise , Nitrogênio/análise , Resíduos Sólidos
4.
Waste Manag ; 71: 1, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29224895
5.
Waste Manag ; 71: 129-136, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29097127

RESUMO

An innovative method was introduced to inhibit methanogenic H2 consumption during dark fermentative hydrogen production by anaerobic mixed cultures. Waste frying oil was used as an inhibitor for hydrogenotrophic methanogens. Simultaneous effect of waste frying oil concentrations (0-20 g/L) and initial pH (5.5, 6.5 and 7.5) on inhibition of methanogenic H2 consumption and enhancement of H2 accumulation were investigated using glucose as substrate. Enhanced hydrogen yields with decreased methane productions were observed with increasing the waste frying oil concentrations. On average, CH4 productions from glucose in the cultures received 10 g/L WFO were reduced by 88%. Increased WFO concentration up to 20 g/L led to negligible CH4 productions and in turn enhanced H2 yields. Hydrogen yields of 209.26, 195.35 and 185.60 mL/g glucoseadded were obtained for the cultures pre-treated with 20 g/L waste frying oil with initial pH of 5.5, 6.5 and 7.5 respectively. H2 production by pre-treated cultures was also studied using a synthetic food waste. Anaerobic mixed cultures were pre-treated with 10 g/L WFO and varying durations (0, 24 and 48 h). A H2 yield of 71.46 mL/g VS was obtained for cultures pre-treated with 10 g/L WFO for 48 h that was 475% higher than untreated control. This study suggests a novel and inexpensive approach for suppressing hydrogenotrophic methanogens during dark fermentative H2 production.


Assuntos
Reatores Biológicos , Fermentação , Hidrogênio , Alimentos
6.
Waste Manag ; 70: 71-80, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28943079

RESUMO

The problem of fossil fuels dependency is being addressed through sustainable bio-fuels and bio-products production worldwide. At the base of this bio-based economy there is the efficient use of biomass as non-virgin feedstock. Through acidogenic fermentation, organic waste can be valorised in order to obtain several precursors to be used for bio-plastic production. Some investigations have been done but there is still a lack of knowledge that must be filled before moving to effective full scale plants. Acidogenic fermentation batch tests were performed using food waste (FW) and cheese whey (CW) as substrates. Effects of nine different combinations of substrate to inoculum (S/I) ratio (2, 4, and 6) and initial pH (5, 7, and 9) were investigated for metabolites (acetate, butyrate, propionate, valerate, lactate, and ethanol) productions. Results showed that the most abundant metabolites deriving from FW fermentation were butyrate and acetate, mainly influenced by the S/I ratio (acetate and butyrate maximum productions of 21.4 and 34.5g/L, respectively, at S/I=6). Instead, when dealing with CW, lactate was the dominant metabolite significantly correlated with pH (lactate maximum production of 15.7g/L at pH = 9).


Assuntos
Fermentação , Plásticos , Eliminação de Resíduos/métodos , Resíduos Sólidos , Reatores Biológicos , Queijo , Soro do Leite
7.
J Environ Sci (China) ; 55: 274-282, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28477822

RESUMO

Efficient and economic reuse of waste is one of the pillars of modern environmental engineering. In the field of domestic sewage management, source separation of yellow (urine), brown (faecal matter) and grey waters aims to recover the organic substances concentrated in brown water, the nutrients (nitrogen and phosphorous) in the urine and to ensure an easier treatment and recycling of grey waters. With the objective of emphasizing the potential of recovery of resources from sewage management, a lab-scale research study was carried out at the University of Padova in order to evaluate the performances of oleaginous plants (suitable for biodiesel production) in the phytotreatment of source separated yellow and grey waters. The plant species used were Brassica napus (rapeseed), Glycine max (soybean) and Helianthus annuus (sunflower). Phytotreatment tests were carried out using 20L pots. Different testing runs were performed at an increasing nitrogen concentration in the feedstock. The results proved that oleaginous species can conveniently be used for the phytotreatment of grey and yellow waters from source separation of domestic sewage, displaying high removal efficiencies of nutrients and organic substances (nitrogen>80%; phosphorous >90%; COD nearly 90%). No inhibition was registered in the growth of plants irrigated with different mixtures of yellow and grey waters, where the characteristics of the two streams were reciprocally and beneficially integrated.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos/métodos , Biodegradação Ambiental
8.
Waste Manag ; 67: 193-202, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28499797

RESUMO

Hybrid Bioreactor Landfills are designed to enhance and speed up biological processes, aiming at reducing the duration of post operational phase until landfill completion. S.An.A.® (Semi-aerobic, Anaerobic, Aerated) concept consists in a Hybrid Bioreactor featuring a first semi-aerobic phase to enhance the methane production occurring in the following anaerobic step and a forced aeration for the abatement of the residual emissions. At the end of the last step, semi-aerobic conditions are restored and flushing applied for leaching residual non-biodegradable compounds. Results of the application of S.An.A.® concept to a lab scale bioreactor system showed that pre-aeration was effective in controlling the concentration of VFA, increasing pH and stimulating methane production during anaerobic phase; in particular with intermittent airflow the methane potential was 50% higher respect to control reactors. Forced aeration reduced organic compounds and nitrogen concentration in leachate of an order of magnitude, better performing in low airflow reactors. S.An.A.® Hybrid bioreactors proved to be an efficient system both for increasing methane production and reaching landfill completion in shorter time, suggesting that with proper landfill management, the duration of post-closure care might be reduced by 25-35%.


Assuntos
Reatores Biológicos , Eliminação de Resíduos , Instalações de Eliminação de Resíduos , Metano
9.
Waste Manag ; 66: 155-160, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28495227

RESUMO

An overall interaction is manifested between wastewater and solid waste management schemes. At the Laboratory of Environmental Engineering (LISA) of the University of Padova, Italy, the scientific and technical implications of putting into practice a decentralized waste and wastewater treatment based on the separation of grey water, brown water (BW - faecal matter) and yellow water (YW - urine) are currently undergoing investigation in the Aquanova Project. An additional aim of this concept is the source segregation of kitchen waste (KW) for subsequent anaerobic co-digestion with BW. To determine an optimal mixing ratio and temperature for use in the treatment of KW, BW, and eventually YW, by means of anaerobic digestion, a series of lab-scale batch tests were performed. Organic mixtures of KW and BW performed much better (max. 520mlCH4/gVS) in terms of methane yields than the individual substrates alone (max. 220mlCH4/gVS). A small concentration of urine proved to have a positive effect on anaerobic digestion performance, possibly due to the presence of micronutrients in YW. When considering high YW concentrations in the anaerobically digested mixtures, no ammonia inhibition was observed until a 30% and 10% YW content was added under mesophilic and thermophilic conditions, respectively.


Assuntos
Reatores Biológicos , Metano , Águas Residuárias , Anaerobiose , Itália , Água
10.
Waste Manag ; 59: 194-199, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27789105

RESUMO

Aerobic pre-treatment was applied prior to two-stage anaerobic digestion process. Three different food wastes samples, namely carbohydrate rich, protein rich and lipid rich, were prepared as substrates. Effect of aerobic pre-treatment on hydrogen and methane production was studied. Pre-aeration of substrates showed no positive impact on hydrogen production in the first stage. All three categories of pre-aerated food wastes produced less hydrogen compared to samples without pre-aeration. In the second stage, methane production increased for aerated protein rich and carbohydrate rich samples. In addition, the lag phase for carbohydrate rich substrate was shorter for aerated samples. Aerated protein rich substrate yielded the best results among substrates for methane production, with a cumulative production of approximately 351ml/gVS. With regard to non-aerated substrates, lipid rich was the best substrate for CH4 production (263ml/gVS). Pre-aerated P substrate was the best in terms of total energy generation which amounted to 9.64kJ/gVS. This study revealed aerobic pre-treatment to be a promising option for use in achieving enhanced substrate conversion efficiencies and CH4 production in a two-stage AD process, particularly when the substrate contains high amounts of proteins.


Assuntos
Biodegradação Ambiental , Hidrogênio/metabolismo , Resíduos Industriais , Eliminação de Resíduos/métodos , Esgotos/química , Anaerobiose , Reatores Biológicos , Carboidratos/química , Ácidos Graxos Voláteis/química , Alimentos , Indústria Alimentícia , Hidrogênio/química , Hidrólise , Lipídeos/química , Metano/química
11.
Waste Manag ; 59: 267-275, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27815029

RESUMO

The use of energy crops in the treatment of wastewaters is of increasing interest, particularly in view of the widespread scarcity of water in many countries and the possibility of obtaining renewable fuels of vegetable origin. The aim of this study was to evaluate the feasibility of landfill leachate phytotreatment using sunflowers, particularly as seeds from this crop are suitable for use in biodiesel production. Two different irrigation systems were tested: vertical flow and horizontal subsurface flow, with or without effluent recirculation. Plants were grown in 130L rectangular tanks placed in a special climatic chamber. Leachate irrigated units were submitted to increasing nitrogen concentrations up to 372mgN/L. Leachate was successfully tested as an alternative fertilizer for plants and was not found to inhibit biomass development. The experiment revealed good removal efficiencies for COD (η>50%) up until flowering, while phosphorous removal invariably exceeded 60%. Nitrogen removal rates decreased over time in all experimental units, particularly in vertical flow tanks. In general, horizontal flow units showed the best performances in terms of contaminant removal capacity; the effluent recirculation procedure did not improve performance. Significant evapo-transpiration was observed, particularly in vertical flow units, promoting removal of up to 80% of the inlet irrigation volume.


Assuntos
Biodegradação Ambiental , Helianthus/metabolismo , Nitrogênio/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Áreas Alagadas , Análise da Demanda Biológica de Oxigênio , Biomassa , Cyperus , Fertilizantes , Humanos , Nitrogênio/química , Fósforo , Poaceae , Polietileno/química , Água
12.
Waste Manag ; 56: 262-70, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27475866

RESUMO

Leachate treatment is a major issue in the context of landfill management, particularly in view of the consistent changes manifested over time in the quality and quantity of leachate produced, linked to both waste and landfill characteristics, which renders the procedure technically difficult and expensive. Leachate recirculation may afford a series of potential advantages, including improvement of leachate quality, enhancement of gas production, acceleration of biochemical processes, control of moisture content, as well as nutrients and microbe migration within the landfill. Recirculation of the products of leachate treatment, such as reverse osmosis (RO) concentrate, is a less common practice, with widespread controversy relating to its suitability, potential impacts on landfill management and future gaseous and leachable emissions. Scientific literature provides the results of only a few full-scale applications of concentrate recirculation. In some cases, an increase of COD and ammonium nitrogen in leachate was observed, coupled with an increase of salinity; which, additionally, might negatively affect performance of the RO plant itself. In other cases, not only did leachate production not increase significantly but the characteristics of leachate extracted from the well closest to the re-injection point also remained unchanged. This paper presents the results of lab-scale tests conducted in landfill simulation reactors, in which the effects of injection of municipal solid waste (MSW) landfill leachate RO concentrate were evaluated. Six reactors were managed with different weekly concentrate inputs, under both anaerobic and aerobic conditions, with the aim of investigating the short and long-term effects of this practice on landfill emissions. Lab-scale tests resulted in a more reliable identification of compound accumulation and kinetic changes than full-scale applications, further enhancing the development of a mass balance in which gaseous emissions and waste characteristics were also taken into consideration. Results showed that RO concentrate recirculation did not produce consistent changes in COD emissions and methane production. Simultaneously, ammonium ion showed a consistent increase in leachate (more than 25%) in anaerobic reactors, free ammonia gaseous emissions doubled with concentrate injection, while chloride resulted accumulated inside the reactor.


Assuntos
Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos , Poluentes Químicos da Água/análise , Aerobiose , Anaerobiose , Reatores Biológicos , Filtração , Eliminação de Resíduos , Instalações de Eliminação de Resíduos
13.
J Environ Manage ; 180: 459-65, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27280854

RESUMO

Dynamic membrane represents a cost effective alternative to conventional membranes by employing fouling as a means of solid-liquid separation. This study evaluated the effects of initial flux on both development rate of dynamic membrane and bioreactor performance during two consecutive experiments. The dynamic membrane was developed over a 200 µm mesh and the reactor was operated under anaerobic conditions. It was found that the effect of an initial higher applied flux on dynamic membrane development was more pronounced than mixed liquor suspended solid concentration inside the bioreactor. The development of the dynamic membrane was therefore positively associated with the applied flux. The rapid development of the dynamic membrane during the second experimental run at high initial fluxes and lower MLSS concentrations also affected the performance of the bioreactor in terms of more efficient COD removal and biogas production. A major shortcoming of applying higher initial applied flux was the formation of a denser and robust dynamic membrane layer that was resistant to applied hydraulic shear to control desired permeability and thus represented an obstacle in maintaining a long term operation with sustainable flux at lower transmembrane pressure (TMP).


Assuntos
Biocombustíveis , Reatores Biológicos , Membranas Artificiais , Eliminação de Resíduos Líquidos/instrumentação , Anaerobiose , Filtração , Permeabilidade , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias
14.
Bioresour Technol ; 216: 250-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27243602

RESUMO

Pre-aeration is effective on regulating subsequent anaerobic degradation of municipal solid waste (MSW) with high organic fractions during landfilling. The strength of pre-aeration should be optimized to intentionally remove some easily biodegradable fractions while conserve bio-methane potential as much as possible. This study investigates the evolution of organic components in MSW during 2-14days pre-aeration process and its impacts on subsequent anaerobic degradation in simulated landfill bioreactors. Results showed that a 6-day pre-aeration enabled to develop a thermophilic stage, which significantly accelerated biodegradation of organics except lignocelluloses, with removal rates of 42.8%, 76.7% and 25.1% for proteins, carbohydrates and lipids, respectively. Particularly, ammonia from accelerated ammonification in the thermophilic stage neutralized VFAs generated from anaerobic landfilling. As a result, the MSW with 6-day pre-aeration obtained the highest methane yield 123.4NL/kg dry matter. Therefore, it is recommended to interrupt pre-aeration before its cooling stage to switch to anaerobic landfilling.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Eliminação de Resíduos/métodos , Resíduos Sólidos , Instalações de Eliminação de Resíduos
15.
Waste Manag ; 55: 265-75, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27349171

RESUMO

Old landfill leachate was treated in lab-scale phytotreatment units using three oleaginous species: sunflower (H), soybean (S) and rapeseed (R). The specific objectives of this study were to identify the effects of plant species combinations with two different soil textures on the reduction of COD, total N (nitrogen) and total P (phosphorous); to identify the correlation between biomass growth and removal efficiency; to assess the potential of oily seeds for the production of biodiesel. The experimental test was carried out using 20L volume pots installed in a greenhouse under different leachate percentages in the feeding and subsequent COD, N and P loads. Significant removal efficiencies were achieved: COD (ɳ>80%), total N (ɳ>70%) and total P (ɳ>95%). Better performances were displayed by the clayey soil. Plants irrigated with leachate, when compared to control units fed only with water and nutrient solution (Hoagland solution), developed a larger plant mass. Sunflower was the best performing species.


Assuntos
Biodegradação Ambiental , Produtos Agrícolas , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Nitrogênio , Fósforo
16.
Waste Manag ; 52: 202-11, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27103400

RESUMO

The wastewater produced during tanning activities are commonly conveyed to centralised industrial wastewater treatment plants. Sludge from physical-chemical treatments (i.e. primary sedimentation) and waste activated sludge from biological treatment units are called tannery sludge. Tannery sludge is a solid waste that needs to be carefully managed and its disposal represents one of the major problems in tannery industry. Conventional treatment and disposal of tannery sludge are based mainly on incineration and landfilling. The aim of this study was to evaluate the effects of a pre-treatment process composed of aerobic stabilisation, compaction and drying, for a sustainable landfilling of tannery sludge. The process produced a reduction of volume, mass and biodegradability of treated sludge. Results also demonstrated a reduced leachability of organic and inorganic compounds from treated sludge. The pre-treatment process could allow to extend landfill life time due to lower amounts of tannery sludge to be disposed off, minimise long terms landfill emissions and obtain a state of carbon sink for tannery sludge landfilling.


Assuntos
Resíduos Industriais/análise , Curtume , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Biodegradação Ambiental , Conservação dos Recursos Naturais , Esgotos/química , Instalações de Eliminação de Resíduos
17.
Waste Manag ; 49: 378-389, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26724231

RESUMO

Over the last decade, the number of decentralized farm biogas plants has increased significantly in the EU. This development leads not only to an increasing amount of biogas produced, but also to a higher amount of digestate obtained. One of the most attractive options to manage the digestate is to apply it as biofertiliser to the soil, because this gives the opportunity of recovering the nutrients, primarily nitrogen and phosphorus, and of attenuating the loss of organic matter suffered by soils under agricultural exploitation. Studies have claimed that digestates can present a residual biodegradability, and contain complex organic elements, salts or pathogenic bacteria that can damage terrestrial organisms. However few ecotoxicological studies have been performed to evaluate the ecological impact of digestate application on soil. In this study, the use of digestate as biofertiliser in agriculture was assessed by a battery of ecotoxicological tests considering the potential pollutants present in the digestate as a whole by using the "matrix-based" approach (also known as "whole effluent toxicity" for eluates or wastewater effluents). The direct and indirect tests included plant bioassays with Lepidium sativum, earthworm bioassays with Eisenia fetida, aquatic organisms (Artemia sp. and Daphnia magna) and luminescent bacteria bioassays (Vibrio fischeri). Direct tests occurred to be more sensitive than indirect tests. The earthworm bioassays did not show serious negative effects for concentrations up to 15% (dry weight/dry weight percent, w/w dm) and the plant bioassays showed no negative effect, but rather a positive one for concentrations lower than 20% (w/w dm), which encourages the use of digestate as a biofertiliser in agriculture provided that proper concentrations are used. The indirect tests, on the eluate, with the using aquatic organisms and luminescent bacteria showed an LC50 value of 13.61% volume/volume percent, v/v) for D. magna and no toxicity for Artemia sp. and V. fischeri. The ecotoxicological parameters obtained from the experimental activity have been analyzed so that they could serve in both ecological risk assessment (ERA) and life cycle assessment (LCA) to assess the risks and impacts of using digestate as a biofertiliser in agriculture. An interim effect factor of 1.17E-3m(3)/kg-in-soil is advocated and can be used in life cycle impact assessment modelling of terrestrial ecotoxicity. A predicted non effect concentration for soil organisms was defined at 341 mg-digestate/kg-soil and can be used for the dose-response assessment step in ERA. Although these values are recommended for use in ERA and LCA applications, it should be stressed that they underlie important uncertainties, which should be reduced by increasing the number of toxicological tests, in particular of chronic studies conducted at different trophic levels.


Assuntos
Fertilizantes/análise , Resíduos Industriais/análise , Aliivibrio fischeri/efeitos dos fármacos , Animais , Biocombustíveis/análise , Crustáceos/efeitos dos fármacos , Fazendas , Fertilizantes/toxicidade , Lepidium sativum/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Medição de Risco , Testes de Toxicidade
18.
Waste Manag ; 55: 83-92, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26531047

RESUMO

Landfilling continues to be one of the main methods used in managing Municipal Solid Waste (MSW) worldwide, particularly in developing countries. Although in many countries national legislation aims to reduce this practice as much as possible, landfill is a necessary and unavoidable step in closing the material cycle. The need for innovative waste management techniques to improve landfill management and minimize the adverse environmental impact produced has resulted in an increasing interest in innovative systems capable of accelerating waste stabilization. Landfill bioreactors allow decomposition kinetics to be increased and post-operational phase to be shortened; in particular, hybrid bioreactors combine the benefits afforded by both aerobic and anaerobic processes. Six bioreactor simulators were used in the present study: four managed as hybrid, with an initial semi-aerobic phase and a second anaerobic phase, and two as anaerobic control bioreactors. The main goal of the first aerated phase is to reduce Volatile Fatty Acids (VFA) in order to increase pH and enhance methane production during the anaerobic phase; for this reason, air injection was stopped only when these parameters reached the optimum range for methanogenic bacteria. Biogas and leachate were constantly monitored throughout the entire methanogenic phase with the aim of calibrating a Gompertz Model and evaluating the effects of pre-aeration on subsequent methane production. The results showed that moderate and intermittent pre-aeration produces a positive effect both on methane potential and in the kinetics of reaction.


Assuntos
Reatores Biológicos , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Aerobiose , Ácidos Graxos Voláteis , Metano/análise , Resíduos Sólidos
19.
Waste Manag ; 47(Pt A): 69-77, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26254676

RESUMO

Organic waste from municipalities, food waste and agro-industrial residues are ideal feedstocks for use in biological conversion processes in biorefinery chains, representing biodegradable materials containing a series of substances belonging to the three main groups of the organic matter: carbohydrates, proteins and lipids. Biological hydrogen production by dark fermentation may assume a central role in the biorefinery concept, representing an up-front treatment for organic waste capable of hydrolysing complex organics and producing biohydrogen. This research study was aimed at evaluating the effects of carbohydrate, protein and lipid content of organic waste on hydrogen yields, volatile fatty acid production and carbon-fate. Biogas and hydrogen productions were linearly correlated to carbohydrate content of substrates while proteins and lipids failed to produce significant contributions. Chemical composition also produced effects on the final products of dark fermentation. Acetic and butyric acids were the main fermentation products, with their ratio proving to correlate with carbohydrate and protein content. The results obtained in this research study enhance the understanding of data variability on hydrogen yields from organic waste. Detailed information on waste composition and chemical characterisation are essential to clearly identify the potential performances of the dark fermentation process.


Assuntos
Carboidratos/análise , Hidrogênio/metabolismo , Lipídeos/análise , Proteínas/análise , Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos , Carbono/metabolismo , Ácidos Graxos Voláteis/metabolismo , Fermentação , Resíduos de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...