Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 3(4): 100295, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37082140

RESUMO

Sea urchins are emblematic models in developmental biology and display several characteristics that set them apart from other deuterostomes. To uncover the genomic cues that may underlie these specificities, we generated a chromosome-scale genome assembly for the sea urchin Paracentrotus lividus and an extensive gene expression and epigenetic profiles of its embryonic development. We found that, unlike vertebrates, sea urchins retained ancestral chromosomal linkages but underwent very fast intrachromosomal gene order mixing. We identified a burst of gene duplication in the echinoid lineage and showed that some of these expanded genes have been recruited in novel structures (water vascular system, Aristotle's lantern, and skeletogenic micromere lineage). Finally, we identified gene-regulatory modules conserved between sea urchins and chordates. Our results suggest that gene-regulatory networks controlling development can be conserved despite extensive gene order rearrangement.

2.
Front Immunol ; 14: 1129513, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36999042

RESUMO

Introduction: Despite increased attention on immunotherapy, primarily immune checkpoint blockade, as a therapeutic approach for mesothelioma (MMe), its efficacy and tolerability remain questioned. One potential explanation for different responses to immunotherapy is the gut and intratumor microbiota; however, these remain an underexplored facet of MMe. This article highlights the cancer intratumor microbiota as a novel potential prognostic indicator in MMe. Methods: TCGA data on 86 MMe patients from cBioPortal underwent bespoke analysis. Median overall survival was used to divide patients into "Low Survivors" and "High Survivors". Comparison of these groups generated Kaplan-Meier survival analysis, differentially expressed genes (DEGs), and identification of differentially abundant microbiome signatures. Decontamination analysis refined the list of signatures, which were validated as an independent prognostic indicator through multiple linear regression modelling and Cox proportional hazards modelling. Finally, functional annotation analysis on the list of DEGs was performed to link the data together. Results: 107 genera signatures were significantly associated with patient survival (positively or negatively), whilst clinical characteristic comparison between the two groups demonstrated that epithelioid histology was more common in "High Survivors" versus biphasic in "Low Survivors". Of the 107 genera, 27 had published articles related to cancer, whilst only one (Klebsiella) had MMe-related published articles. Functional annotation analysis of the DEGs between the two groups highlighted fatty acid metabolism as the most enriched term in "High Survivors", whilst for "Low Survivors" the enriched terms primarily related to cell cycle/division. Linking these ideas and findings together is that the microbiome influences, and is influenced by, lipid metabolism. Finally, to validate the independent prognostic value of the microbiome, multiple linear regression modelling as well as Cox proportional hazards modelling were employed, with both approaches demonstrating that the microbiome was a better prognostic indicator than patient age or stage of the cancer. Discussion: The findings presented herein, alongside the very limited literature from scoping searches to validate the genera, highlight the microbiome and microbiota as a potentially rich source of fundamental analysis and prognostic value. Further in vitro studies are needed to elucidate the molecular mechanisms and functional links that may lead to altered survival.


Assuntos
Mesotelioma Maligno , Mesotelioma , Microbiota , Humanos , Prognóstico , Mesotelioma/patologia
3.
Open Biol ; 13(1): 220254, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36597694

RESUMO

Carbonic anhydrases (CANs) are conserved metalloenzymes catalysing the reversible hydration of carbon dioxide into protons and bicarbonate, with important roles in cells physiology. Some CAN-coding genes were found in sea urchin genome, although only one involved in embryonic skeletogenesis was described in Paracentrotus lividus. Here, we investigated gene expression patterns of P. lividus embryos cultured in the presence of acetazolamide (AZ), a CAN inhibitor, to combine morphological defects with their molecular underpinning. CAN inhibition blocked skeletogenesis, affected the spatial/temporal expression of some biomineralization-related genes, inhibited embryos swimming. A comparative analysis on the expression of 127 genes in control and 3 h/24 h AZ-treated embryos, using NanoString technology, showed the differential expression of genes encoding for structural/regulatory proteins, with different embryonic roles: biomineralization, transcriptional regulation, signalling, development and defence response. The study of the differentially expressed genes and the signalling pathways affected, besides in silico analyses and a speculative 'interactomic model', leads to predicting the presence of various CAN isoforms, possibly involved in different physiological processes/activities in sea urchin embryo, and their potential target genes/proteins. Our findings provide new valuable molecular data for further studies in several biological fields: developmental biology (biomineralization, axes patterning), cell differentiation (neural development) and drug toxicology (AZ effects on embryos/tissues).


Assuntos
Anidrases Carbônicas , Paracentrotus , Animais , Acetazolamida/farmacologia , Acetazolamida/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/farmacologia , Paracentrotus/genética , Perfilação da Expressão Gênica , Transdução de Sinais , Regulação da Expressão Gênica no Desenvolvimento , Embrião não Mamífero/metabolismo
4.
Toxics ; 10(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35736933

RESUMO

Many anthropogenic pollutants such as metals are discharged into the marine environment through modern sources. Among these, lithium (Li), nickel (Ni), and zinc (Zn) can interfere with biological processes in many organisms when their concentration rises. These metals are toxic to sea urchin embryos, affecting their development. Indeed, animal/vegetal and dorso/ventral embryonic axes are differently perturbed: Li is a vegetalizing agent, Ni can disrupt dorso-ventral axis, Zn can be animalizing. To address the molecular response adopted by embryos to cope with these metals or involved in the gene networks regulating embryogenesis, and to detect new biomarkers for evaluating hazards in polluted environments in a well-known in vivo model, we applied a high-throughput screening approach to sea urchin embryos. After fertilization, Paracentrotus lividus embryos were exposed to Li, Ni, and Zn for 24/48 h. At both endpoints, RNAs were analyzed by NanoString nCounter technology. By in silico analyses, we selected a panel of 127 transcripts encoding for regulatory and structural proteins, ranked in categories: Apoptosis, Defense, Immune, Nervous, Development, and Biomineralization. The data analysis highlighted the dysregulation of many genes in a metal-dependent manner. A functional annotation analysis was performed by the KEEG Orthology database. This study provides a platform for research on metals biomarkers in sea urchins.

5.
Biology (Basel) ; 10(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670451

RESUMO

Invertebrates represent about 95% of existing species, and most of them belong to aquatic ecosystems. Marine invertebrates are found at intermediate levels of the food chain and, therefore, they play a central role in the biodiversity of ecosystems. Furthermore, these organisms have a short life cycle, easy laboratory manipulation, and high sensitivity to marine pollution and, therefore, they are considered to be optimal bioindicators for assessing detrimental chemical agents that are related to the marine environment and with potential toxicity to human health, including neurotoxicity. In general, albeit simple, the nervous system of marine invertebrates is composed of neuronal and glial cells, and it exhibits biochemical and functional similarities with the vertebrate nervous system, including humans. In recent decades, new genetic and transcriptomic technologies have made the identification of many neural genes and transcription factors homologous to those in humans possible. Neuroinflammation, oxidative stress, and altered levels of neurotransmitters are some of the aspects of neurotoxic effects that can also occur in marine invertebrate organisms. The purpose of this review is to provide an overview of major marine pollutants, such as heavy metals, pesticides, and micro and nano-plastics, with a focus on their neurotoxic effects in marine invertebrate organisms. This review could be a stimulus to bio-research towards the use of invertebrate model systems other than traditional, ethically questionable, time-consuming, and highly expensive mammalian models.

6.
Aquat Toxicol ; 232: 105770, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33581547

RESUMO

Paracentrotus lividus is a Mediterranean and Eastern Atlantic sea urchin species, very sensitive to chemical and physical environmental changes and widely used in eco-toxicological studies. Here, we applied a high throughput screening approach on P. lividus embryos exposed to UVB radiation (UV), Cadmium Chloride (Cd) and their combination (Cd/UV), to deeply characterize the molecular responses adopted by embryos to cope with these stressors. in vitro eco-toxicological assays were performed by exposing embryos to Cd (10-4 M) soon after fertilization, to UV (200 and 400J/m2) at early stage of development, while in co-exposure experiments, Cd-exposed embryos were irradiated with UV at 200 J/m2. By NanoString nCounter technology, custom-made probes were developed and hybridized on total RNA extracted from exposed embryos at 51h after fertilization. By in silico analyses, we selected and retrieved at the NCBI nucleotide database a panel of P. lividus transcripts encoding for many regulatory and structural proteins that we ranked in categories, i.e., Apoptosis, Biomineralization, Defense, Development, Immunity, Signaling and Transcription Factors. The analysis of 127 transcripts highlighted the dysregulation of many genes, some specifically activated to cope with stress agents, others involved in the complex molecular network of genes that regulate embryo development. We revealed the downregulation of Biomineralization and Development genes and the upregulation of Defensive genes in Cd and Cd/UV embryos. Our approach, using sea urchin embryo as an in vivomodel, contributes to advance our knowledge about cellular responses to UV, Cd and their combination.

7.
Front Oncol ; 11: 801779, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34993151

RESUMO

Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of patients with chronic myeloid leukemia (CML). However, continued use of these inhibitors has contributed to the increase in clinical resistance and the persistence of resistant leukemic stem cells (LSCs). So, there is an urgent need to introduce additional targeted and selective therapies to eradicate quiescent LSCs, and to avoid the relapse and disease progression. Here, we focused on emerging BCR-ABL targeted and non-BCR-ABL targeted drugs employed in clinical trials and on alternative CML treatments, including antioxidants, oncolytic virus, engineered exosomes, and natural products obtained from marine organisms that could pave the way for new therapeutic approaches for CML patients.

8.
Animals (Basel) ; 11(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374168

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Beta-coronavirus genus. It is 96.2% homologous to bat CoV RaTG13 and 88% homologous to two bat SARS-like coronaviruses. SARS-CoV-2 is the infectious agent responsible for the coronavirus disease (COVID-19), which was first reported in the Hubei province of Wuhan, China, at the beginning of December 2019. Human transmission from COVID-19 patients or incubation carriers occurs via coughing, sneezing, speaking, discharge from the nose, or fecal contamination. Various strains of the virus have been reported around the world, with different virulence and behavior. In addition, SARS-CoV-2 shares certain epitopes with some taxonomically related viruses, with tropism for the most common synanthropic animals. By elucidating the immunological properties of the circulating SARS-CoV-2, a partial protection due to human-animal interactions could be supposed in some situations. In addition, differential epitopes could be used for the differential diagnosis of SARS-CoV-2 infection. There have been cases of transmission from people with COVID-19 to pets such as cats and dogs. In addition, wild felines were infected. All These animals were either asymptomatic or mildly symptomatic and recovered spontaneously. Experimental studies showed cats and ferrets to be more susceptible to COVID-19. COVID-19 positive dogs and felines do not transmit the infection to humans. In contrast, minks at farms were severely infected from people with COVID-19. A SARS-Cov-2 variant in the Danish farmed mink that had been previously infected by COVID-19 positive workers, spread to mink workers causing the first case of animal-to-human infection transmission that causes a moderate decreased sensitivity to neutralizing antibodies. Thus, more investigations are necessary. It remains important to understand the risk that people with COVID-19 pose to their pets, as well as wild or farm animals so effective recommendations and risk management measures against COVID-19 can be made. A One Health unit that facilitates collaboration between public health and veterinary services is recommended.

9.
Cell Death Dis ; 11(10): 867, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-33067416

RESUMO

Author Francesca Pentimalli was incorrectly associated with Histopathological Unit, IRCCS-Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, 70124 Bari, Italy. The author's actual affiliation is Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, I-80131 Napoli, Italy.

10.
Cell Death Dis ; 11(9): 748, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929059

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive cancer, related to asbestos exposure, which has a dismal prognosis. MPM diagnosis is late and often challenging, suggesting the need to identify more reliable molecular biomarkers. Here, we set out to identify differentially expressed miRNAs in epithelioid, biphasic, and sarcomatoid MPMs versus normal mesothelium and explored specific miRNA contribution to mesothelial tumorigenesis. We screened an LNA™-based miRNA-microrray with 14 formalin-fixed paraffin-embedded (FFPE) MPMs and 6 normal controls. Through real-time qRT-PCR we extended the analysis of a miRNA subset and further investigated miR-320a role through state-of-the-art techniques. We identified 16 upregulated and 32 downregulated miRNAs in MPMs versus normal tissue, including the previously identified potential biomarkers miR-21, miR-126, miR-143, miR-145. We showed in an extended series that miR-145, miR-10b, and miR-320a levels can discriminate tumor versus controls with high specificity and sensitivity. We focused on miR-320a because other family members were found downregulated in MPMs. However, stable miR-320a ectopic expression induced higher proliferation and migration ability, whereas miR-320a silencing reduced these processes, not supporting a classic tumor-suppressor role in MPM cell lines. Among putative targets, we found that miR-320a binds the 3'-UTR of the immune inhibitory receptor ligand PDL1 and, consistently, miR-320a modulation affects PDL1 levels in MPM cells. Finally, we showed that p53 over-expression induces the upregulation of miR-320a, along with miR-200a and miR-34a, both known to target PDL1, and reduces PDL1 levels in MPM cells. Our data suggest that PDL1 expression might be due to a defective p53-regulated miRNA response, which could contribute to MPM immune evasion or tumorigenesis through tumor-intrinsic roles.


Assuntos
Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Mesotelioma Maligno/metabolismo , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Regulação para Baixo , Células HEK293 , Humanos , Mesotelioma Maligno/genética , Mesotelioma Maligno/patologia , MicroRNAs/genética , Transfecção , Proteína Supressora de Tumor p53/genética
12.
Biochim Biophys Acta Mol Cell Res ; 1867(1): 118558, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31525406

RESUMO

The sea urchin embryo develops a well-defined biomineralized endoskeleton, synthesized exclusively by the skeletogenic cells, supported by ectodermal cues for the correct skeleton patterning. The biomineralization process is tightly regulated via a hierarchical order of gene expression, including transcription and growth factors, biomineralization proteins. Recently, the role of kinases and intracellular signaling pathways in sea urchin skeletogenesis has been addressed, although the downstream components still remain unknown. In this study, we investigated the role of phosphatidylinositide 3-kinase (PI3K)-mediated signaling pathway in Paracentrotus lividus, to identify its genes/proteins targets. The effects of LY294002 (LY), a PI3K-specific inhibitor, were evaluated at morphological and molecular levels. Treatment with 40 µM LY from the blastula stage completely blocked skeleton deposition, which was reversed by wash out experiments. Besides, LY caused a slight delay in the tripartite gut development. Despite the skeleton absence, a few skeleton-specific proteins/mRNAs were regularly expressed and localized in LY-treated embryos, as shown for MSP130 and SM50 by immunofluorescence and in situ hybridization experiments. QPCR analyses showed that LY differently affected the expression of genes coding for other biomineralization proteins, transcription and growth factors. SM30 and carbonic anhydrase expression was severely downregulated, while almost all the transcription factors analyzed were upregulated. Based on the present results and in silico analyses, we propose an "interactomic" model simulating PI3K connections in P. lividus embryos. Our findings define a novel regulatory step in the embryonic skeletogenesis, and provide valuable molecular data for further studies on the role of PI3K signaling in invertebrate biomineralization.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Cromonas/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Morfolinas/farmacologia , Paracentrotus/embriologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Animais , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/embriologia , Osso e Ossos/metabolismo , Biologia Computacional , Embrião não Mamífero , Epistasia Genética/efeitos dos fármacos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes/efeitos dos fármacos , Redes Reguladoras de Genes/genética , Paracentrotus/efeitos dos fármacos , Paracentrotus/genética , Paracentrotus/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
13.
J Hazard Mater ; 384: 121389, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31639584

RESUMO

Titanium dioxide nanoparticles (TiO2NPs) are revolutionizing biomedicine due to their potential application as diagnostic and therapeutic agents. However, the TiO2NP immune-compatibility remains an open issue, even for ethical reasons. In this work, we investigated the immunomodulatory effects of TiO2NPs in an emergent proxy to human non-mammalian model for in vitro basic and translational immunology: the sea urchin Paracentrotus lividus. To highlight on the new insights into the evolutionarily conserved intracellular signaling and metabolism pathways involved in immune-TiO2NP recognition/interaction we applied a wide-ranging approach, including electron microscopy, biochemistry, transcriptomics and metabolomics. Findings highlight that TiO2NPs interact with immune cells suppressing the expression of genes encoding for proteins involved in immune response and apoptosis (e.g. NF-κB, FGFR2, JUN, MAPK14, FAS, VEGFR, Casp8), and boosting the immune cell antioxidant metabolic activity (e.g. pentose phosphate, cysteine-methionine, glycine-serine metabolism pathways). TiO2NP uptake was circumscribed to phagosomes/phagolysosomes, depicting harmless vesicular internalization. Our findings underlined that under TiO2NP-exposure sea urchin innate immune system is able to control inflammatory signaling, excite antioxidant metabolic activity and acquire immunological tolerance, providing a new level of understanding of the TiO2NP immune-compatibility that could be useful for the development in Nano medicines.


Assuntos
Antioxidantes/metabolismo , Imunidade Inata/efeitos dos fármacos , Nanopartículas/toxicidade , Paracentrotus/efeitos dos fármacos , Titânio/toxicidade , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Imunidade Inata/genética , Paracentrotus/citologia , Paracentrotus/imunologia , Paracentrotus/metabolismo , Fagocitose/efeitos dos fármacos
14.
Mar Environ Res ; 139: 99-112, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29776592

RESUMO

Lithium (Li), Nickel (Ni), and Zinc (Zn) are metals normally present in the seawater, although they can have adverse effects on the marine ecosystem at high concentrations by interfering with many biological processes. These metals are toxic for sea urchin embryos, affecting their morphology and developmental pathways. In particular, they perturb differently the correct organization of the embryonic axes (animal-vegetal, dorso-ventral): Li is a vegetalizing agent and Ni disrupts the dorso-ventral axis, while Zn has an animalizing effect. To deeply address the response of Paracentrotus lividus embryos to these metals, we studied the expression profiling of Pl-Fra transcription factor (TF), relating it to Pl-jun, a potential partner for AP-1 complex formation, and to Pl-MT, known to be an AP-1 target and to have a protective role against heavy metals. The AP-1 TFs are found throughout the animal kingdom and are involved in many cellular events, i.e. cell proliferation and differentiation, immune and stress responses, cancer growth. Here, we isolated the complete Pl-Fra cDNA and showed that Pl-Fra transcript, already present in the unfertilized eggs, was newly synthesized from the blastula stage, while its spatial distribution was mainly observed in skeletogenic cells, similarly to Pl-jun. Interestingly, Pl-Fra expression was induced by the different metals and the induction kinetics revealed its persistent expression during treatments. Moreover, its temporal and spatial behavior in response to the three metals was comparable to that of Pl-jun and Pl-MT. The understanding of AP-1 functions in invertebrates may provide new knowledge about the mechanisms of response to metal injuries, as well as it might lead to acknowledge the TFs as new type of biomarkers for the evaluation of hazards in polluted environment.


Assuntos
Metais/toxicidade , Paracentrotus/embriologia , Fator de Transcrição AP-1/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Regulação da Expressão Gênica , Paracentrotus/fisiologia , Ouriços-do-Mar
15.
Mar Environ Res ; 139: 113-121, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29773318

RESUMO

Many industrial activities release Nickel (Ni) in the environment with harmful effects for terrestrial and marine organisms. Despite many studies on the mechanisms of Ni toxicity are available, the understanding about its toxic effects on marine organisms is more limited. We used Paracentrotus lividus as a model to analyze the effects on the stress pathways in embryos continuously exposed to different Ni doses, ranging from 0.03 to 0.5 mM. We deeply examined the altered embryonic morphologies at 24 and 48 h after Ni exposure. Some different phenotypes have been classified, showing alterations at the expenses of the dorso-ventral axis as well as the skeleton and/or the pigment cells. At the lowest dose used, Ni mainly induced a multi-spicule phenotype observed at 24 h after treatment. On the contrary, at the highest dose of Ni (0.5 mM), 90% of embryos showed no skeleton and no pigment cells. Therefore, we focused on this dose to study protein and gene expression patterns at 24 and 48 h after exposure. Among the proteins analyzed, i.e. p38MAPK, Grp78 and Mn-SOD, only p38MAPK was induced by Ni treatment. Moreover, we analyzed the mRNA profiles of a pool of genes that are involved in stress response and in development mechanisms, i.e. the transcription factors Pl-NFkB and Pl-FOXO; a marker of DNA repair, Pl-XPB/ERCC3; a mitogen-activated protein kinase (MAPK), Pl-p38; an ER stress gene, Pl-grp78; an adapter protein, Pl-14-3-3ε; two markers of pigment cells, Pl-PKS1 and Pl-gcm. The spatial expression of mesenchymal marker genes has been evaluated in Ni-treated embryos at both 24 and 48 h after exposure. Our results indicated that Ni acts at several levels in P. lividus sea urchin, by affecting embryo development, influencing the embryonic immune response and activating stress response pathways to counteract the suffered injury and to promote embryos surviving.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Níquel/toxicidade , Paracentrotus/embriologia , Poluentes Químicos da Água/toxicidade , Animais , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Expressão Gênica , Paracentrotus/fisiologia
16.
Oncogene ; 37(27): 3657-3671, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29606701

RESUMO

The retinoblastoma (RB) protein family includes RB1/p105, RBL1/p107, and RBL2/p130, which are key factors in cell-cycle regulation and stand at the crossroads of multiple pathways dictating cell fate decisions. The role of RB proteins in apoptosis is controversial because they can inhibit or promote apoptosis depending on the context, on the apoptotic stimuli and on their intrinsic status, impacting on the response to antitumoral treatments. Here we identified RBL2/p130 as a direct substrate of the AKT kinase, a key antiapoptotic factor hyperactive in multiple cancer types. We showed that RBL2/p130 and AKT1 physically interact and AKT phosphorylates RBL2/p130 Ser941, located in the pocket domain, but not when this residue is mutated into Ala. We found that pharmacological inhibition of AKT, through the highly selective AKT inhibitor VIII (AKTiVIII), impairs RBL2/p130 Ser941 phosphorylation and increases RBL2/p130 stability, mRNA expression and nuclear levels in both lung cancer and mesothelioma cell lines, mirroring the more extensively studied effects on the p27 cell-cycle inhibitor. Consistently, AKT inhibition reduced cell viability, induced cell accumulation in G0/G1, and triggered apoptosis, which proved to be largely dependent on RBL2/p130 itself, as shown upon RBL2/p130 silencing. AKT inhibition induced RBL2/p130-dependent apoptosis also in HEK-293 cells, in which re-expression of a short hairpin-resistant RBL2/p130 was able to rescue AKTiVIII-induced apoptosis upon RBL2/p130 silencing. Our data also showed that the combination of AKT and cyclin-dependent kinases (CDK) inhibitors, which converge on the re-activation of RBL2/p130 antitumoral potential, could be a promising anticancer strategy.


Assuntos
Apoptose/fisiologia , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína p130 Retinoblastoma-Like/metabolismo , Células A549 , Benzimidazóis/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular , Células HEK293 , Humanos , Neoplasias Pulmonares/genética , Mesotelioma/genética , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Quinoxalinas/farmacologia , RNA Mensageiro/biossíntese , Proteína p130 Retinoblastoma-Like/genética
17.
Aquat Toxicol ; 194: 57-66, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29156215

RESUMO

Chelates of Gadolinium (Gd), a lanthanide metal, are employed as contrast agents for magnetic resonance imaging and are released into the aquatic environment where they are an emerging contaminant. We studied the effects of environmentally relevant Gd concentrations on the development of two phylogenetically and geographically distant sea urchin species: the Mediterranean Paracentrotus lividus and the Australian Heliocidaris tuberculata. We found a general delay of embryo development at 24h post-fertilization, and a strong inhibition of skeleton growth at 48h. Total Gd and Ca content in the larvae showed a time- and concentration-dependent increase in Gd, in parallel with a reduction in Ca. To investigate the impact of Gd on the expression of genes involved in the regulation of skeletogenesis, we performed comparative RT-PCR analysis and found a misregulation of several genes involved in the skeletogenic and left-right axis specification gene regulatory networks. Species-specific differences in the biomineralization response were evident, likely due to differences in the skeletal framework of the larvae and the amount of biomineral produced. Our results highlight the hazard of Gd for marine organisms.


Assuntos
Anthocidaris/efeitos dos fármacos , Cálcio/metabolismo , Gadolínio/toxicidade , Paracentrotus/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Anthocidaris/classificação , Anthocidaris/crescimento & desenvolvimento , Desenvolvimento Embrionário/efeitos dos fármacos , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Larva/metabolismo , Paracentrotus/classificação , Paracentrotus/crescimento & desenvolvimento , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
18.
J Cell Physiol ; 233(5): 4338-4344, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29150959

RESUMO

NONO is an RNA-binding protein involved in transcription, mRNA splicing, DNA repair, and checkpoint activation in response to UV radiation. NONO expression has been found altered in several tumor types, including prostate, colon, breast, melanoma, and in papillary renal carcinoma, in which an X chromosome inversion generates a NONO-TFE3 fusion protein. Upon such rearrangement, NONO loses its C-terminal domain. Through bioinformatics analysis, we identified a putative degron motif, known to be recognized by the Skp1-Cul1-F-box-protein (SCF) complex. Here, we evaluated how this domain could affect NONO protein biology. We showed that NONO interacts with the nuclear FBW7α isoform and its ubiquitination is regulated following modulation of the GSK3ß kinase. Mutation of T428A/T432A within the degron impaired polyubiquitination upon FBW7α and GSK3ß overexpression. Overall, our data suggest that NONO is likely subjected to proteasome-mediated degradation and add NONO to the list of proteins targeted by FBW7, which is itself often deregulated in cancer.


Assuntos
Proteína 7 com Repetições F-Box-WD/genética , Glicogênio Sintase Quinase 3 beta/genética , Neoplasias/genética , Proteínas Associadas à Matriz Nuclear/genética , Fatores de Transcrição de Octâmero/genética , Proteínas de Ligação a RNA/genética , Linhagem Celular Tumoral , Núcleo Celular/genética , Aberrações Cromossômicas , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Motivos de Nucleotídeos/genética , Fosforilação , Proteínas Ligases SKP Culina F-Box/genética , Ubiquitinação/genética
19.
Oncotarget ; 7(47): 78127-78139, 2016 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-27816966

RESUMO

UV radiations challenge genomic stability and are a recognized cancer risk factor. We previously found that the RNA-binding protein NONO regulates the intra-S phase checkpoint and its silencing impaired HeLa and melanoma cell response to UV-induced DNA damage. Here we investigated the mechanisms underlying NONO regulation upon UVC treatment. We found that UVC rays induce the expression of mir320a, which can indeed target NONO. However, despite mir320a induction, NONO mRNA and protein expression are not affected by UVC. We found through RNA immunoprecipitation that UVC rays induce the ubiquitous RNA-binding protein HUR to bind NONO 5'UTR in a site overlapping mir320a binding site. Both HUR silencing and its pharmacological inhibition induced NONO downregulation following UVC exposure, whereas concomitant mir320a silencing restored NONO stability. UVC-mediated mir320a upregulation is triggered by p53 binding to its promoter, which lies within a region marked by H3K4me3 and H3K27ac signals upon UVC treatment. Silencing mir320a sensitizes cells to DNA damage. Overall our findings reveal a new mechanism whereby HUR protects NONO from mir320-mediated degradation upon UVC exposure and identify a new component within the complex network of players underlying the DNA damage response adding mir320a to the list of p53-regulated targets upon genotoxic stress.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , MicroRNAs/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Fatores de Transcrição de Octâmero/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sítios de Ligação , Dano ao DNA , Proteínas de Ligação a DNA , Células HCT116 , Células HEK293 , Células HeLa , Humanos , MicroRNAs/biossíntese , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção , Raios Ultravioleta
20.
Mar Biotechnol (NY) ; 18(3): 384-95, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27230618

RESUMO

Carbonic anhydrases (CA) are zinc metalloenzymes that catalyze the reversible hydration of carbon dioxide to bicarbonate. In the sea urchin, CA has a role in the formation of the calcitic skeleton during embryo development. Here, we report a newly identified mRNA sequence from embryos of the sea urchin Paracentrotus lividus, referred to as Pl-can. The complete coding sequence was identified with the aid of both EST databases and experimental procedures. Pl-CAN is a 447 aa-long protein, with an estimated molecular mass of 48.5 kDa and an isoelectric point of 6.83. The in silico study of functional domains showed, in addition to the alpha type CA-specific domain, the presence of an unexpected glycine-rich region at the N-terminal of the molecule. This is not found in any other species described so far, but probably it is restricted to the sea urchins. The phylogenetic analysis indicated that Pl-CAN is evolutionarily closer to human among chordates than to other species. The putative role(s) of the identified domains is discussed. The Pl-can temporal and spatial expression profiles, analyzed throughout embryo development by comparative qPCR and whole-mount in situ hybridization (WMISH), showed that Pl-can mRNA is specifically expressed in the primary mesenchyme cells (PMC) of the embryo and levels increase along with the growth of the embryonic skeleton, reaching a peak at the pluteus stage. A recombinant fusion protein was produced in E. coli and used to raise specific antibodies in mice recognized the endogenous Pl-CAN by Western blot in embryo extracts from gastrula and pluteus.


Assuntos
Anidrases Carbônicas/genética , Regulação da Expressão Gênica no Desenvolvimento , Paracentrotus/genética , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/genética , Sequência de Aminoácidos , Animais , Anidrases Carbônicas/metabolismo , Clonagem Molecular , DNA Complementar/genética , DNA Complementar/metabolismo , Embrião não Mamífero , Escherichia coli/genética , Escherichia coli/metabolismo , Ponto Isoelétrico , Peso Molecular , Fases de Leitura Aberta , Especificidade de Órgãos , Paracentrotus/classificação , Paracentrotus/embriologia , Paracentrotus/metabolismo , Filogenia , Domínios Proteicos , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...