Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 573: 1380-1389, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27453143

RESUMO

Foraging ecology and the marine regions exploited by Antarctic seabirds outside of breeding strongly influence their exposure to persistent organic pollutants (POPs). However, relationships between them are largely unknown, an important knowledge gap given that many species are capital breeders and POPs may be deleterious to seabirds. This study investigates the relationship between Antarctic seabird foraging ecology (measured by δ13C and δ15N) and POPs accumulated in their eggs prior to breeding. Organochlorinated pesticides, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and dechlorane plus (DP) were measured in eggs of chinstrap, Adélie, and gentoo penguins (Pygoscelis antarctica, P. adeliae, P. papua), as well as south polar skua (Catharacta maccormicki), sampled on King George Island. Total POP levels were as follows: skua (3210±3330ng/g lipid weight)>chinstrap (338±128ng/g)>Adélie (287±43.3ng/g)>gentoo (252±49.4ng/g). Trophic position and pre-breeding foraging sites were important in explaining POP accumulation patterns across species. The most recalcitrant compounds were preferentially accumulated in skuas, occupying one trophic level above penguins. In contrast, their Antarctic endemism, coupled with influence from cold condensation of pollutants, likely contributed to penguins exhibiting higher concentrations of more volatile compounds (e.g., hexachlorobenzene, PCB-28 and -52) than skuas. Regional differences in penguin pre-breeding foraging areas did not significantly affect their POP burdens, whereas the trans-equatorial migration and foraging sites of skuas were strongly reflected in their pollutant profiles, especially for PBDEs and DPs. Overall, our results provide new insights on migratory birds as biovectors of POPs, including non-globally regulated compounds such as DP, from northern regions to Antarctica.


Assuntos
Charadriiformes/fisiologia , Exposição Ambiental , Comportamento Alimentar , Spheniscidae/fisiologia , Poluentes Químicos da Água/metabolismo , Animais , Regiões Antárticas , Isótopos de Carbono/análise , Monitoramento Ambiental , Isótopos de Nitrogênio/análise , Óvulo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA