Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38044706

RESUMO

The production of sugarcane bioethanol generates large volumes of vinasse, an effluent whose final disposal can produce an environmental impact that is of concern. The long-term disposal of vinasse in sugarcane fields could challenge crop management, such as the performance of traditional herbicides, by changing soil properties. This study aimed to evaluate the effect of long-term vinasse application on the field and the dissipation of atrazine and ametryn herbicides in a subtropical sugarcane agroecosystem, and to discuss the potential processes involved in it. Vinasse affected soil properties by increasing pH (12%), electrical conductivity (160%), and soil organic carbon (25%) at 0-10 cm depth of soil. Differences in the herbicide calculated sorption coefficient (Kd) varied according to the pedotransfer function applied and the herbicide type (atrazine or ametryn). During the first seven days after herbicide application, the soil underwent long-term vinasse application and increased atrazine and ametryn dissipation 45% and 33%, respectively, compared with the conventional fertilization scheme (control). The Pesticide Root Zone Model revealed that dissipation was mediated mainly by the degradation process rather than transport or other processes. The long-term application of vinasse in a typical sugarcane field of Tucumán, Argentina decreased the potential groundwater pollution of triazines and, adversely, reduced their bioavailability for weed control. For this, the present study presents original information about how long-term treatment with vinasse may require an adaptation of conventional management practices such as the application of herbicides in Argentina and other sugarcane-producing regions. Integr Environ Assess Manag 2023;00:1-12. © 2023 SETAC.

2.
J Cancer Policy ; 35: 100376, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36511325

RESUMO

BACKGROUND: Next-generation sequencing (NGS) is recognised by a growing audience of medical professionals as a functional diagnostic tool in oncology. However, adoption in clinical routine proceeds haphazardly in Europe. METHODS: A semi-structured interview survey was administered to 68 cancer care professionals in four EU countries between June-August and November-December 2021. Pre-screening questionnaires assessed sufficient NGS expertise, diverse geographical distribution, and professional roles. RESULTS: Our findings provide a better understanding of current clinical, regulatory, and reimbursement practices for NGS in four EU countries. CONCLUSIONS: Despite the impending European In-vitro Diagnostic Medical Devices Regulation (IVDR), tortuous national guidelines implementations and limping reimbursement policies are common traits across surveyed countries and produce disparity in access to advanced healthcare services amid regional distinctions. POLICY SUMMARY: The evident information gap between involved parties and demand for consistent national guidelines could be filled by health economics analyses tailored to local specifics to provide factual leverage for a structured adoption of NGS testing.


Assuntos
Neoplasias , Humanos , União Europeia , Oncologia , Política de Saúde , Sequenciamento de Nucleotídeos em Larga Escala
3.
Med Biol Eng Comput ; 60(6): 1569-1584, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35386027

RESUMO

Lung diseases affect the lives of billions of people worldwide, and 4 million people, each year, die prematurely due to this condition. These pathologies are characterized by specific imagiological findings in CT scans. The traditional Computer-Aided Diagnosis (CAD) approaches have been showing promising results to help clinicians; however, CADs normally consider a small part of the medical image for analysis, excluding possible relevant information for clinical evaluation. Multiple Instance Learning (MIL) approach takes into consideration different small pieces that are relevant for the final classification and creates a comprehensive analysis of pathophysiological changes. This study uses MIL-based approaches to identify the presence of lung pathophysiological findings in CT scans for the characterization of lung disease development. This work was focus on the detection of the following: Fibrosis, Emphysema, Satellite Nodules in Primary Lesion Lobe, Nodules in Contralateral Lung and Ground Glass, being Fibrosis and Emphysema the ones with more outstanding results, reaching an Area Under the Curve (AUC) of 0.89 and 0.72, respectively. Additionally, the MIL-based approach was used for EGFR mutation status prediction - the most relevant oncogene on lung cancer, with an AUC of 0.69. The results showed that this comprehensive approach can be a useful tool for lung pathophysiological characterization.


Assuntos
Enfisema , Neoplasias Pulmonares , Diagnóstico por Computador/métodos , Enfisema/patologia , Fibrose , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Interpretação de Imagem Radiográfica Assistida por Computador , Tomografia Computadorizada por Raios X/métodos
4.
J Pers Med ; 12(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35330479

RESUMO

Advancements in the development of computer-aided decision (CAD) systems for clinical routines provide unquestionable benefits in connecting human medical expertise with machine intelligence, to achieve better quality healthcare. Considering the large number of incidences and mortality numbers associated with lung cancer, there is a need for the most accurate clinical procedures; thus, the possibility of using artificial intelligence (AI) tools for decision support is becoming a closer reality. At any stage of the lung cancer clinical pathway, specific obstacles are identified and "motivate" the application of innovative AI solutions. This work provides a comprehensive review of the most recent research dedicated toward the development of CAD tools using computed tomography images for lung cancer-related tasks. We discuss the major challenges and provide critical perspectives on future directions. Although we focus on lung cancer in this review, we also provide a more clear definition of the path used to integrate AI in healthcare, emphasizing fundamental research points that are crucial for overcoming current barriers.

5.
Gut ; 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012996

RESUMO

OBJECTIVE: Intratumor heterogeneity drives cancer progression and therapy resistance. However, it has yet to be determined whether and how subpopulations of cancer cells interact and how this interaction affects the tumour. DESIGN: We have studied the spontaneous flow of extracellular vesicles (EVs) between subpopulations of cancer cells: cancer stem cells (CSC) and non-stem cancer cells (NSCC). To determine the biological significance of the most frequent communication route, we used pancreatic ductal adenocarcinoma (PDAC) orthotopic models, patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMMs). RESULTS: We demonstrate that PDAC tumours establish an organised communication network between subpopulations of cancer cells using EVs called the EVNet). The EVNet is plastic and reshapes in response to its environment. Communication within the EVNet occurs preferentially from CSC to NSCC. Inhibition of this communication route by impairing Rab27a function in orthotopic xenographs, GEMMs and PDXs is sufficient to hamper tumour growth and phenocopies the inhibition of communication in the whole tumour. Mechanistically, we provide evidence that CSC EVs use agrin protein to promote Yes1 associated transcriptional regulator (YAP) activation via LDL receptor related protein 4 (LRP-4). Ex vivo treatment of PDXs with antiagrin significantly impairs proliferation and decreases the levels of activated YAP.Patients with high levels of agrin and low inactive YAP show worse disease-free survival. In addition, patients with a higher number of circulating agrin+ EVs show a significant increased risk of disease progression. CONCLUSION: PDAC tumours establish a cooperation network mediated by EVs that is led by CSC and agrin, which allows tumours to adapt and thrive. Targeting agrin could make targeted therapy possible for patients with PDAC and has a significant impact on CSC that feeds the tumour and is at the centre of therapy resistance.

6.
Cancer Cell Int ; 21(1): 675, 2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34915883

RESUMO

Liquid biopsy (LB) has boosted a remarkable change in the management of cancer patients by contributing to tumour genomic profiling. Plasma circulating cell-free tumour DNA (ctDNA) is the most widely searched tumour-related element for clinical application. Specifically, for patients with lung cancer, LB has revealed valuable to detect the diversity of targetable genomic alterations and to detect and monitor the emergence of resistance mechanisms. Furthermore, its non-invasive nature helps to overcome the difficulty in obtaining tissue samples, offering a comprehensive view about tumour diversity. However, the use of the LB to support diagnostic and therapeutic decisions still needs further clarification. In this sense, this review aims to provide a critical view of the clinical importance of plasma ctDNA analysis, the most widely applied LB, and its limitations while anticipating concepts that will intersect the present and future of LB in non-small cell lung cancer patients.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1707-1710, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891615

RESUMO

Lung cancer is the deadliest form of cancer, accounting for 20% of total cancer deaths. It represents a group of histologically and molecularly heterogeneous diseases even within the same histological subtype. Moreover, accurate histological subtype diagnosis influences the specific subtype's target genes, which will help define the treatment plan to target those genes in therapy. Deep learning (DL) models seem to set the benchmarks for the tasks of cancer prediction and subtype classification when using gene expression data; however, these methods do not provide interpretability, which is great concern from the perspective of cancer biology since the identification of the cancer driver genes in an individual provides essential information for treatment and prognosis. In this work, we identify some limitations of previous work that showed efforts to build algorithms to extract feature weights from DL models, and we propose using tree-based learning algorithms that address these limitations. Preliminary results show that our methods outperform those of related research while providing model interpretability.Clinical Relevance: The machine learning methods used in this work are interpretable and provide biological insight. Two sets of genes were extracted: a set that differentiates normal tissue from cancerous tissue (cancer prediction), and a set of genes that distinguishes LUAD from LUSC samples (subtype classification).


Assuntos
Neoplasias Pulmonares , Algoritmos , Expressão Gênica , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Aprendizado de Máquina
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 2852-2855, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891842

RESUMO

Deep Neural Networks using histopathological images as an input currently embody one of the gold standards in automated lung cancer diagnostic solutions, with Deep Convolutional Neural Networks achieving the state of the art values for tissue type classification. One of the main reasons for such results is the increasing availability of voluminous amounts of data, acquired through the efforts employed by extensive projects like The Cancer Genome Atlas. Nonetheless, whole slide images remain weakly annotated, as most common pathologist annotations refer to the entirety of the image and not to individual regions of interest in the patient's tissue sample. Recent works have demonstrated Multiple Instance Learning as a successful approach in classification tasks entangled with this lack of annotation, by representing images as a bag of instances where a single label is available for the whole bag. Thus, we propose a bag/embedding-level lung tissue type classifier using Multiple Instance Learning, where the automated inspection of lung biopsy whole slide images determines the presence of cancer in a given patient. Furthermore, we use a post-model interpretability algorithm to validate our model's predictions and highlight the regions of interest for such predictions.


Assuntos
Neoplasias Pulmonares , Redes Neurais de Computação , Algoritmos , Humanos
9.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34575971

RESUMO

BACKGROUND: The tumor immune microenvironment exerts a pivotal influence in tumor initiation and progression. The aim of this study was to analyze the immune context of sporadic and familial adenomatous polyposis (FAP) lesions along the colorectal adenoma-carcinoma sequence (ACS). METHODS: We analyzed immune cell counts (CD3+, CD4+, CD8+, Foxp3+, and CD57+), tumor mutation burden (TMB), MHC-I expression and PD-L1 expression of 59 FAP and 74 sporadic colorectal lesions, encompassing adenomas with low-grade dysplasia (LGD) (30 FAP; 30 sporadic), adenomas with high-grade dysplasia (22 FAP; 30 sporadic), and invasive adenocarcinomas (7 FAP; 14 sporadic). RESULTS: The sporadic colorectal ACS was characterized by (1) a stepwise decrease in immune cell counts, (2) an increase in TMB and MHC-I expression, and (3) a lower PD-L1 expression. In FAP lesions, we observed the same patterns, except for an increase in TMB along the ACS. FAP LGD lesions harbored lower Foxp3+ T cell counts than sporadic LGD lesions. A decrease in PD-L1 expression occurred earlier in FAP lesions compared to sporadic ones. CONCLUSIONS: The colorectal ACS is characterized by a progressive loss of adaptive immune infiltrate and by the establishment of a progressively immune cold microenvironment. These changes do not appear to be related with the loss of immunogenicity of tumor cells, or to the onset of an immunosuppressive tumor microenvironment.


Assuntos
Adenocarcinoma/imunologia , Polipose Adenomatosa do Colo/imunologia , Antígeno B7-H1/genética , Neoplasias Colorretais/imunologia , Microambiente Tumoral/imunologia , Imunidade Adaptativa/imunologia , Adenocarcinoma/complicações , Adenocarcinoma/genética , Adenocarcinoma/patologia , Polipose Adenomatosa do Colo/complicações , Polipose Adenomatosa do Colo/genética , Polipose Adenomatosa do Colo/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/imunologia , Complexo CD3/imunologia , Linfócitos T CD4-Positivos/imunologia , Antígenos CD57/imunologia , Linfócitos T CD8-Positivos/imunologia , Contagem de Células , Linhagem da Célula/imunologia , Neoplasias Colorretais/complicações , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fatores de Transcrição Forkhead/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Masculino , Pessoa de Meia-Idade
10.
Cells ; 10(8)2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34440680

RESUMO

INTRODUCTION: Cell-free DNA (cfDNA) analysis offers a non-invasive method to identify sensitising and resistance mutations in advanced Non-Small Cell Lung Cancer (NSCLC) patients. Next-generation sequencing (NGS) of circulating free DNA (cfDNA) is a valuable tool for mutations detection and disease's clonal monitoring. MATERIAL AND METHODS: An amplicon-based targeted gene NGS panel was used to analyse 101 plasma samples of advanced non-small cell lung cancer (NSCLC) patients with known oncogenic mutations, mostly EGFR mutations, serially collected at different clinically relevant time points of the disease. RESULTS: The variant allelic frequency (VAF) monitoring in consecutive plasma samples demonstrated different molecular response and progression patterns. The decrease in or the clearance of the mutant alleles was associated with response and the increase in or the emergence of novel alterations with progression. At the best response, the median VAF was 0% (0.0% to 3.62%), lower than that at baseline, with a median of 0.53% (0.0% to 9.9%) (p = 0.004). At progression, the VAF was significantly higher (median 4.67; range: 0.0-36.9%) than that observed at the best response (p = 0.001) and baseline (p = 0.006). These variations anticipated radiographic changes in most cases, with a median time of 0.86 months. Overall, the VAF evolution of different oncogenic mutations predicts clinical outcomes. CONCLUSION: The targeted NGS of circulating tumour DNA (ctDNA) has clinical utility to monitor treatment response in patients with advanced lung adenocarcinoma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Adulto , Idoso , Alelos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , DNA Tumoral Circulante/sangue , Receptores ErbB/genética , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do Tratamento
11.
Healthcare (Basel) ; 9(7)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208830

RESUMO

Artificial intelligence (AI)-based solutions have revolutionized our world, using extensive datasets and computational resources to create automatic tools for complex tasks that, until now, have been performed by humans. Massive data is a fundamental aspect of the most powerful AI-based algorithms. However, for AI-based healthcare solutions, there are several socioeconomic, technical/infrastructural, and most importantly, legal restrictions, which limit the large collection and access of biomedical data, especially medical imaging. To overcome this important limitation, several alternative solutions have been suggested, including transfer learning approaches, generation of artificial data, adoption of blockchain technology, and creation of an infrastructure composed of anonymous and abstract data. However, none of these strategies is currently able to completely solve this challenge. The need to build large datasets that can be used to develop healthcare solutions deserves special attention from the scientific community, clinicians, all the healthcare players, engineers, ethicists, legislators, and society in general. This paper offers an overview of the data limitation in medical predictive models; its impact on the development of healthcare solutions; benefits and barriers of sharing data; and finally, suggests future directions to overcome data limitations in the medical field and enable AI to enhance healthcare. This perspective is dedicated to the technical requirements of the learning models, and it explains the limitation that comes from poor and small datasets in the medical domain and the technical options that try or can solve the problem related to the lack of massive healthcare data.

12.
Cancers (Basel) ; 13(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070940

RESUMO

BACKGROUND: Analysis of circulating tumor DNA (ctDNA) has remarkable potential as a non-invasive lung cancer molecular diagnostic method. This prospective study addressed the clinical value of a targeted-gene amplicon-based plasma next-generation sequencing (NGS) assay to detect actionable mutations in ctDNA in patients with newly diagnosed advanced lung adenocarcinoma. METHODS: ctDNA test performance and concordance with tissue NGS were determined, and the correlation between ctDNA findings, clinical features, and clinical outcomes was evaluated in 115 patients with paired plasma and tissue samples. RESULTS: Targeted-gene NGS-based ctDNA and NGS-based tissue analysis detected 54 and 63 genomic alterations, respectively; 11 patients presented co-mutations, totalizing 66 hotspot mutations detected, 51 on both tissue and plasma, 12 exclusively on tissue, and 3 exclusively on plasma. NGS-based ctDNA revealed a diagnostic performance with 81.0% sensitivity, 95.3% specificity, 94.4% PPV, 83.6% NPV, test accuracy of 88.2%, and Cohen's Kappa 0.764. PFS and OS assessed by both assays did not significantly differ. Detection of ctDNA alterations was statistically associated with metastatic disease (p = 0.013), extra-thoracic metastasis (p = 0.004) and the number of organs involved (p = 0.010). CONCLUSIONS: This study highlights the potential use of ctDNA for mutation detection in newly diagnosed NSCLC patients due to its high accuracy and correlation with clinical outcomes.

13.
Front Oncol ; 11: 634316, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937034

RESUMO

Liquid biopsy is an emerging technology with a potential role in the screening and early detection of lung cancer. Several liquid biopsy-derived biomarkers have been identified and are currently under ongoing investigation. In this article, we review the available data on the use of circulating biomarkers for the early detection of lung cancer, focusing on the circulating tumor cells, circulating cell-free DNA, circulating micro-RNAs, tumor-derived exosomes, and tumor-educated platelets, providing an overview of future potential applicability in the clinical practice. While several biomarkers have shown exciting results, diagnostic performance and clinical applicability is still limited. The combination of different biomarkers, as well as their combination with other diagnostic tools show great promise, although further research is still required to define and validate the role of liquid biopsies in clinical practice.

14.
J Mol Diagn ; 23(7): 882-893, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964449

RESUMO

Tumor mutation burden (TMB) is evaluated as a biomarker of response to immunotherapy. We present the efforts of the Onconetwork Immuno-Oncology Consortium to validate a commercial targeted sequencing test for TMB calculation. A three-phase study was designed to validate the Oncomine Tumor Mutational Load (OTML) assay at nine European laboratories. Phase 1 evaluated reproducibility and accuracy on seven control samples. In phase 2, six formalin-fixed, paraffin-embedded samples tested with FoundationOne were reanalyzed with the OTML panel to evaluate concordance and reproducibility. Phase 3 involved analysis of 90 colorectal cancer samples with known microsatellite instability (MSI) status to evaluate TMB and MSI association. High reproducibility of TMB was demonstrated among the sites in the first and second phases. Strong correlation was also detected between mean and expected TMB in phase 1 (r2 = 0.998) and phase 2 (r2 = 0.96). Detection of actionable mutations was also confirmed. In colorectal cancer samples, the expected pattern of MSI-high/high-TMB and microsatellite stability/low-TMB was present, and gene signatures produced by the panel suggested the presence of a POLE mutation in two samples. The OTML panel demonstrated robustness and reproducibility for TMB evaluation. Results also suggest the possibility of using the panel for mutational signatures and variant detection. Collaborative efforts between academia and companies are crucial to accelerate the translation of new biomarkers into clinical research.


Assuntos
Neoplasias Colorretais/genética , DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Instabilidade de Microssatélites , Carga Tumoral/genética , Células A549 , Biomarcadores Tumorais/genética , Neoplasias Colorretais/patologia , DNA/isolamento & purificação , Reparo de Erro de Pareamento de DNA/genética , Análise Mutacional de DNA/métodos , Confiabilidade dos Dados , Humanos , Células MCF-7 , Reprodutibilidade dos Testes
15.
Cancers (Basel) ; 13(7)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916029

RESUMO

Melanoma is the deadliest form of skin cancer, primarily due to its high metastatic propensity and therapeutic resistance in advanced stages. The frequent inactivation of the p53 tumour suppressor protein in melanomagenesis may predict promising outcomes for p53 activators in melanoma therapy. Herein, we aimed to investigate the antitumor potential of the p53-activating agent SLMP53-2 against melanoma. Two- and three-dimensional cell cultures and xenograft mouse models were used to unveil the antitumor activity and the underlying molecular mechanism of SLMP53-2 in melanoma. SLMP53-2 inhibited the growth of human melanoma cells in a p53-dependent manner through induction of cell cycle arrest and apoptosis. Notably, SLMP53-2 induced p53 stabilization by disrupting the p53-MDM2 interaction, enhancing p53 transcriptional activity. It also promoted the expression of p53-regulated microRNAs (miRNAs), including miR-145 and miR-23a. Moreover, it displayed anti-invasive and antimigratory properties in melanoma cells by inhibiting the epithelial-to-mesenchymal transition (EMT), angiogenesis and extracellular lactate production. Importantly, SLMP53-2 did not induce resistance in melanoma cells. Additionally, it synergized with vemurafenib, dacarbazine and cisplatin, and resensitized vemurafenib-resistant cells. SLMP53-2 also exhibited antitumor activity in human melanoma xenograft mouse models by repressing cell proliferation and EMT while stimulating apoptosis. This work discloses the p53-activating agent SLMP53-2 which has promising therapeutic potential in advanced melanoma, either as a single agent or in combination therapy. By targeting p53, SLMP53-2 may counteract major features of melanoma aggressiveness.

16.
Br J Pharmacol ; 178(18): 3627-3647, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33899955

RESUMO

BACKGROUND AND PURPOSE: Advances in the treatment of triple-negative breast and ovarian cancer remain challenging. In particular, resistance to the available therapy, by restoring or overexpressing the DNA repair machinery, has often been reported. New strategies to improve the therapeutic outcomes of these cancers are needed. Herein, we disclose the dregamine 5-bromo-pyridin-2-ylhydrazone (BBIT20), a natural monoterpene indole alkaloid derivative, as an inhibitor of homologous DNA repair. EXPERIMENTAL APPROACH: To unveil BBIT20 antitumour activity and underlying molecular mechanism of action, two-dimensional (2D) and three-dimensional (3D) cell cultures, patient-derived cell lines and xenograft mouse models were used. KEY RESULTS: BBIT20 disrupted the BRCA1-BARD1 interaction, triggering nuclear-to-cytoplasmic BRCA1 translocation, cell cycle arrest and downregulation of homologous DNA repair-related genes and proteins, with subsequent enhancement of DNA damage, reactive oxygen species generation and apoptosis, in triple-negative breast and ovarian cancer cells. BBIT20 also displayed pronounced antitumour activity in patient-derived cells and xenograft mouse models of ovarian cancer, with low toxicity in non-malignant cells and undetectable side effects in mice. Additionally, it did not induce resistance in triple-negative breast and ovarian cancer and displayed marked synergistic effects with cisplatin and olaparib (a poly [ADP-ribose] polymerase inhibitor), on 2D and 3D models of these cancer cells. CONCLUSION AND IMPLICATIONS: These findings add an inhibitor of the BRCA1-BARD1 interaction to the list of DNA-damaging agents. Importantly, either as a single agent or in combination therapy, BBIT20 reveals great potential in the personalized treatment of aggressive and resistant cancers, particularly triple-negative breast and advanced ovarian cancer.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Proteína BRCA1 , Linhagem Celular Tumoral , Reparo do DNA , Sinergismo Farmacológico , Feminino , Humanos , Camundongos , Neoplasias Ovarianas/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteínas Supressoras de Tumor , Ubiquitina-Proteína Ligases
17.
Crit Rev Oncol Hematol ; 161: 103311, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33781866

RESUMO

Lung cancer is the leading cause of cancer death worldwide, with non-small cell lung cancer (NSCLC) representing its most commonly diagnosed sub-type. Despite the significant improvements in lung cancer biomarkers knowledge, accompanied by substantial technological advances in molecular tumor profiling, a considerable fraction (up to 30 %) of advanced NSCLC patient presents with major testing challenges or tissue unavailability for molecular analysis. In this context, liquid biopsy is on the rise, currently gaining considerable interest within the molecular pathology and oncology community. Molecular profiling of liquid biopsy specimens using next generation molecular biology methodologies is a rapidly evolving field with promising applications not exclusively limited to advanced stages but also more recently expanding to early stages cancer patients. Here, we offer an overview of some of the most consolidated and emerging applications of next generation sequencing technologies for liquid biopsy testing in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Biópsia Líquida , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética
18.
Environ Sci Pollut Res Int ; 28(7): 8530-8538, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33063213

RESUMO

Monensin is an ionophore antibiotic used as a feed additive and growth promoter in cattle production worldwide. The occurrence of monensin in aquatic surficial ecosystems is of concern due to its possible detrimental effects on human health and native biota. Argentina is one of the most important cattle beef producers worldwide; however, there is little knowledge on the environmental occurrence of monensin and the associated risks to aquatic biota. In this study, we developed a method for the extraction and quantification of monensin in surface water; then, we evaluated the occurrence of monensin in a stream impacted by different animal husbandry's operations, and then, we analyzed the ecological implications of monensin residues on aquatic organisms using the risk quotient (RQ) method. Sampling was carried out on August 2017 from the headwaters to the floodplain of the El Pantanoso stream, Buenos Aires province, Argentina. Monensin detection frequency was 75% (n = 20). The median level was 0.40 µg/L and the maximum concentration was 4.70 µg/L. The main input of monensin was from a cattle slaughterhouse, an activity that has not been considered before in the literature as a source of emission of veterinary pharmaceuticals into the environment. The RQ assessment showed that monensin levels could have potential negative effects on aquatic biota in the sampling site closest to the cattle slaughterhouse. The data obtained in this study shows that monensin was present in El Pantanoso surface waters at levels of high ecotoxicological risk to aquatic biota.


Assuntos
Drogas Veterinárias , Poluentes Químicos da Água , Animais , Argentina , Biota , Bovinos , Ecossistema , Monitoramento Ambiental , Monensin , Água , Poluentes Químicos da Água/análise
19.
Cancers (Basel) ; 12(12)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339259

RESUMO

Breast cancer is a complex disease whose molecular mechanisms are not completely understood. Developing target therapies is a promising approach. Therefore, understanding the biological behavior of the tumor is a challenge. Tissue biopsy in the metastatic setting remains the standard method for diagnosis. Nevertheless, it has been associated with some disadvantages: It is an invasive procedure, it may not represent tumor heterogeneity, and it does not allow for treatment efficacy to be assessed or early recurrences to be detected. Analysis of circulating tumor DNA (ctDNA) may help to overcome this as it is a non-invasive method of monitoring the disease. In early-stage disease, it can detect early recurrences and monitor tumors' genomic profiles, identifying the emergence of new genetic alterations which can be related to tumor-acquired resistance. In the metastatic setting, the analysis of ctDNA may also allow for the anticipation of clinical and radiological progression of the disease, selection of targeted therapies, and for a photogram of tumor heterogeneity to be provided. It may also detect disease progression earlier in locally advanced tumors submitted to neoadjuvant treatment, and identify minimal residual disease. ctDNA analysis may guide clinical decision-making in different scenarios, in a precision medicine era, once it acts as a repository of genetic tumor material, allowing for a comprehensive mutation profiling analysis. In this review, we focused on recent advances towards the implementation of ctDNA in a clinical routine for breast cancer.

20.
Acta Med Port ; 33(5): 297-304, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32416752

RESUMO

INTRODUCTION: Overcoming immunosurveillance is a major step in the progression of many types of tumors. Several immune escape strategies have been identified, including immunoediting and the establishment of an immune suppressive microenvironment. The aim of the present study was to determine whether the hereditary or sporadic context has any influence in the relationship between immune surveillance and tumor development, using sporadic and familial adenomatous polyposis related colorectal adenomas as a model. MATERIAL AND METHODS: The immune tumor-infiltrating cells of a total of 58 low-grade and 18 high-grade colorectal adenomas were examined and compared, using immunostaining for CD3, CD4, CD8, CD57, CD68 and FoxP3. RESULTS: FoxP3 and CD68 counts were significantly higher in sporadic low-grade dysplasia (p = 0.0003 and p = 0.0103, respectively),and FoxP3 and CD4 counts were found to be significantly higher in high-grade sporadic dysplasia (p = 0.0008 and p = 0.0018, respectively)when compared with corresponding lesions in patients with familial adenomatous polyposis. DISCUSSION: This study suggests that the immune microenvironment of sporadic and hereditary lesions is different. Sporadic lesions contain a higher number of immune suppressive Treg cells, which suggests a stronger immune selective pressure. In contrast, hereditarylesions seem to benefit from a more tolerant immune microenvironment, allowing for the development of lesions with lower immune cell infiltration. CONCLUSION: This study shows that sporadic lesions harbor higher tumor-infiltrating immune cell counts, which might reflect a higher immune tolerance towards hereditary lesions.


Introdução: A capacidade de contornar a imunovigilância é fundamental na progressão de muitos tumores. Já foram identificadas várias estratégias de escape imunológico, incluindo immunoediting e o estabelecimento de um microambiente imunológico supressivo. O objetivo do presente estudo passa por determinar se o contexto hereditário ou esporádico influencia a relação entre a imunovigilância e o desenvolvimento do tumor, usando adenomas coloretais esporádicos e hereditários, no contexto de polipose adenomatosa familiar, como modelos. Material e Métodos: Os infiltrados imunológicos tumorais de um total de 58 adenomas coloretais de baixo grau e de 18 de alto grau foram avaliados e comparados, usando imunohistoquímica com marcação para CD3, CD4, CD8, CD57, CD68 e FoxP3. Resultados: As contagens celulares com imunorreatividade para FoxP3 e CD68 foram significativamente mais elevadas na displasia esporádica de baixo grau (p = 0,0003 e p = 0,0103, respetivamente), enquanto que as contagens para FoxP3 e CD4 foram significativamente mais elevadas na displasia esporádica de alto grau (p = 0,0008 e p = 0,0018, respetivamente) quando comparadas com lesões correspondentes em doentes com polipose adenomatosa familiar. Discussão: O presente estudo sugere que o microambiente imunológico de lesões esporádicas e hereditárias é diferente. As lesões esporádicas contam com um número superior de células T reguladoras, supressoras da função imunológica, sugerindo-se uma pressão imune seletiva mais forte. Por seu turno, as lesões hereditárias parecem beneficiar de um microambiente imunológico mais tolerante, permitindo o desenvolvimento de lesões com menor infiltrado celular imune. Conclusão: Este estudo demonstra que as lesões esporádicas contam com contagens de infiltrados imunológicos tumorais superiores, o que poderá refletir uma maior tolerância imunológica face a lesões hereditárias.


Assuntos
Adenoma/genética , Adenoma/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Adenoma/patologia , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...