Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(13)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38998076

RESUMO

This systematic review examines the impact of varying Spirulina (Limnospira platensis) intake levels on broiler chickens, focusing on growth performance, blood health markers and carcass traits. The data revealed cumulative Spirulina intakes from 3.13 g to 521 g per bird (total feed consumed multiplied by its proportion in the diet) establish a cubic relationship between dosage and growth outcomes. Initial benefits peak and diminish with increased intake, with the optimal threshold for growth performance identified at 45 g per bird. Lower intakes between 14 g and 29 g per bird enhance blood health markers, improving lipid profiles and antioxidant capacity. Similarly, cumulative intakes of 14 g to 37 g per bird optimise meat quality, resulting in better dressing percentages, breast and thigh yields and meat tenderness while minimizing undesirable traits like abdominal fat and cooking loss. These findings underscore the importance of precisely calibrated Spirulina supplementation strategies to maximise growth, health and meat quality benefits while avoiding adverse effects at higher doses. Future research should focus on identifying optimal dosage and duration, assessing long-term implications, elucidating mechanisms of action and ensuring safety and regulatory compliance. Comparative studies with other feed additives could further establish Spirulina's effectiveness and economic viability in poultry production.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38890812

RESUMO

Ulva lactuca, a green seaweed, may be an alternative source of nutrients and bioactive compounds for weaned piglets. However, it has a recalcitrant cell wall rich in a sulphated polysaccharide - ulvan - that is indigestible to monogastrics. The objective of this study was to evaluate the effect of dietary incorporation of 7% U. lactuca, combined with carbohydrases supplementation (commercial carbohydrase mixture or recombinant ulvan lyase), on growth performance, nutrient digestibility and gut health parameters (morphology and microbiota) of weaned piglets. The experiment was conducted over 14 days using 40 weaned piglets randomly allocated to one of four experimental diets: a control diet based on wheat-maize-soybean meal, a diet with 7% U. lactuca replacing the control diet (UL), a diet with UL supplemented with 0.005% Rovabio® Excel AP, and a diet with UL supplemented with 0.01% of a recombinant ulvan lyase. The dietary treatments had no major effects on growth performance, nitrogen balance and gut content variables, as well as histological measurements. Contrarily, dry matter and organic matter digestibility decreased with dietary seaweed inclusion, while hemicellulose digestibility increased, suggesting a high fermentability of this cell wall fraction independently of carbohydrases supplementation. Some beneficial microbial populations increased as a consequence of enzymatic supplementation (e.g., Prevotella), while seaweed diets as a whole led to an increased abundance of Shuttleworthia, Anaeroplasma and Lachnospiraceae_NK3A20_group, all related with a healthier gut. It also decreased Lactobacillus when compared to controls, which is possibly related to increased bioavailability of seaweed zinc. This study indicates that, under these experimental conditions, up to 7% dietary U. lactuca has no detrimental effect on piglet growth, despite decreasing acid detergent fibre digestibility. Carbohydrases supplementation of Ulva diets is not required at this incorporation level.

3.
BMC Vet Res ; 20(1): 176, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711127

RESUMO

BACKGROUND: This investigation assessed the effects of high dietary inclusion of Spirulina (Arthrospira platensis) on broiler chicken growth performance, meat quality and nutritional attributes. For this, 120 male broiler chicks were housed in 40 battery brooders (three birds per brooder). Initially, for 14 days, a standard corn and soybean meal diet was administered. Subsequently, from days 14 to 35, chicks were assigned to one of the four dietary treatments (n = 10 per treatment): (1) control diet (CTR); (2) diet with 15% Spirulina (SP); (3) diet with 15% extruded Spirulina (SPE); and (4) diet with 15% Spirulina plus a super-dosing enzymes supplement (0.20% pancreatin extract and 0.01% lysozyme) (SPM). RESULTS: Throughout the experimental period, both SP and SPM diets resulted in decreased final body weight and body weight gain compared to control (p < 0.001), with the SPE diet showing comparable results to CTR. The SPE diet prompted an increase in average daily feed intake (p = 0.026). However, all microalga treatments increased the feed conversion ratio compared to CTR. Dietary inclusion of Spirulina notably increased intestinal content viscosity (p < 0.010), which was mitigated by the SPM diet. Spirulina supplementation led to lower pH levels in breast meat 24 h post-mortem and heightened the b* colour value in both breast and thigh meats (p < 0.010). Furthermore, Spirulina contributed to an increased accumulation of total carotenoids, n-3 polyunsaturated fatty acids (PUFA), and saturated fatty acids (SFA), while diminishing n-6 PUFA, thus altering the n-6/n-3 and PUFA/SFA ratios favourably (p < 0.001). However, it also reduced zinc concentration in breast meat (p < 0.001). CONCLUSIONS: The findings indicate that high Spirulina levels in broiler diets impair growth due to increased intestinal viscosity, and that extrusion pre-treatment mitigates this effect. Despite reducing digesta viscosity, a super-dosing enzyme mix did not improve growth. Data also indicates that Spirulina enriches meat with antioxidants and n-3 PUFA but reduces α-tocopherol and increases saturated fats. Reduced zinc content in meat suggests the need for Spirulina biofortification to maintain its nutritional value.


Assuntos
Ração Animal , Galinhas , Dieta , Suplementos Nutricionais , Carne , Spirulina , Animais , Galinhas/crescimento & desenvolvimento , Ração Animal/análise , Spirulina/química , Dieta/veterinária , Masculino , Carne/análise , Carne/normas , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Muramidase/metabolismo
4.
Front Vet Sci ; 11: 1342310, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38596464

RESUMO

The impact of 15% dietary inclusion of Spirulina (Arthrospira platensis) in broiler chickens was explored, focusing on blood cellular components, systemic metabolites and hepatic lipid and mineral composition. From days 14 to 35 of age, 120 broiler chickens were divided and allocated into four dietary treatments: a standard corn and soybean meal-based diet (control), a 15% Spirulina diet, a 15% extruded Spirulina diet, and a 15% Spirulina diet super-dosed with an enzyme blend (0.20% porcine pancreatin plus 0.01% lysozyme). The haematological analysis revealed no significant deviations (p > 0.05) in blood cell counts across treatments, suggesting that high Spirulina inclusion maintains haematological balance. The systemic metabolic assessment indicated an enhanced antioxidant capacity in birds on Spirulina diets (p < 0.001), pointing toward a potential reduction in oxidative stress. However, the study noted a detrimental impact on growth performance metrics, such as final body weight and feed conversion ratio (both p < 0.001), in the Spirulina-fed treatments, with the super-dosed enzyme blend supplementation failing to alleviate these effects but with extrusion mitigating them. Regarding hepatic composition, birds on extruded Spirulina and enzyme-supplemented diets showed a notable increase in n-3 fatty acids (EPA, DPA, DHA) (p < 0.001), leading to an improved n-6/n-3 PUFA ratio (p < 0.001). Despite this positive shift, a reduction in total hepatic lipids (p = 0.003) was observed without a significant change in cholesterol levels. Our findings underscore the need for further exploration into the optimal inclusion levels, processing methods and potential enzymatic enhancements of Spirulina in broiler diets. Ultimately, this research aims to strike a balance between promoting health benefits and maintaining optimal growth performance in poultry nutrition.

5.
Foods ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38472912

RESUMO

This work aimed to assess how different cumulative levels of Spirulina (Arthrospira platensis) intake influence individual broiler meat quality parameters, nutritional value and health-related traits. The data analysed showed varying cumulative Spirulina intake levels, ranging from 3.46 to 521 g/bird, with large changes in meat traits. The key findings indicate that Spirulina intake significantly enhances meat colour, primarily due to its rich carotenoid content. However, this enhancement shows a saturation effect at higher intake levels, where additional Spirulina does not further improve the colour. Regarding the meat nutritional profile, Spirulina increases beneficial n - 3 polyunsaturated fatty acids and reduces lipid oxidation. These effects on meat, however, are not linear and become more complex at higher microalga intake levels. Regarding meat sensory attributes, moderate Spirulina levels positively influence flavour and texture. Still, higher levels may lead to changes not universally preferred by meat consumers, highlighting the need for balanced Spirulina inclusion in diets. Optimal Spirulina cumulative intake levels must be identified to balance meat's nutritional benefits with consumer preferences. Additionally, ensuring Spirulina's purity and adherence to regulatory standards is essential for consumer safety and market access. These findings provide valuable insights for poultry nutritionists and the food industry, emphasising the necessity of a balanced approach to Spirulina's incorporation in poultry diets.

6.
Vet Sci ; 11(1)2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38275926

RESUMO

This review explores the potential of microalgae as a sustainable and nutritionally rich alternative for mineral supplementation in poultry diets, addressing both the opportunities and challenges in this emerging field. Poultry nutrition, pivotal to the health and productivity of birds, traditionally relies on inorganic and organic mineral sources which, while effective, raise environmental and economic concerns. Microalgae offer a promising solution with their high contents of essential minerals, proteins, vitamins, and bioactive compounds. This review delves into the nutritional profiles of various microalgae, highlighting their rich contents of minerals which are crucial for physiological processes in poultry. It examines the bioavailability of these minerals and their impact on poultry health and productivity. Furthermore, it evaluates the environmental sustainability of microalgae cultivation and acknowledges the challenges in using microalgae in poultry diets, particularly in terms of the economic viability of large-scale production and the consistency of nutrient composition. It discusses the importance of rigorous safety assessments and regulatory compliance, given the potential risks of toxins and heavy metals. Overall, this analysis aims to provide a clear understanding of the role microalgae could play in poultry nutrition and address sustainability challenges in animal agriculture while also considering future perspectives and advancements needed in this field.

7.
J Proteomics ; 293: 105063, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38151157

RESUMO

The brown seaweed Laminaria digitata, a novel feedstuff for weaned piglets, has potentially beneficial prebiotic properties. However, its recalcitrant cell wall challenges digestion in monogastrics. Alginate lyase is a promising supplement to mitigate this issue. This study's aim was to investigate the impact of incorporating 10% dietary Laminaria digitata, supplemented with alginate lyase, on the hepatic proteome and metabolome of weaned piglets. These diets introduced minor variations to the metabolome and caused significant shifts in the proteome. Dietary seaweed provided a rich source of n-3 PUFAs that could signal hepatic fatty acid oxidation (FABP, ACADSB and ALDH1B1). This may have affected the oxidative stability of the tissue, requiring an elevated abundance of GST for regulation. The presence of reactive oxygen species likely inflicted protein damage, triggering increased proteolytic activity (LAPTM4B and PSMD4). Alginate lyase supplementation augmented the number of differentially abundant proteins, which included GBE1 and LDHC, contributing to maintain circulating glucose levels by mobilizing glycogen stores and branched-chain amino acids. The enzymatic supplementation with alginate lyase amplified the effects of the seaweed-only diet. An additional filter was employed to test the effect of missing values on the proteomics analysis, which is discussed from a technical perspective. SIGNIFICANCE: Brown seaweeds such as Laminaria digitata have prebiotic and immune-modulatory components, such as laminarin, that can improve weaned piglet health. However, they have recalcitrant cell wall polysaccharides, such as alginate, that can elicit antinutritional effects on the monogastric digestive system. The aim of this study was to evaluate the effect of a high level of dietary L. digitata and alginate lyase supplementation on the hepatic metabolism of weaned piglets, using high throughput Omics approaches.


Assuntos
Algas Comestíveis , Laminaria , Polissacarídeo-Liases , Proteoma , Alga Marinha , Animais , Suínos , Proteômica , Dieta , Suplementos Nutricionais , Alga Marinha/química , Fígado
8.
J Proteomics ; 289: 105013, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37775079

RESUMO

Laminaria digitata, a brown seaweed with prebiotic properties, can potentially enhance the resilience of weaned piglets to nutritional distress. However, their cell wall polysaccharides elude digestion by monogastric animals' endogenous enzymes. In vitro studies suggest alginate lyase's ability to degrade such polysaccharides. This study aimed to assess the impact of a 10% dietary inclusion of L. digitata and alginate lyase supplementation on the ileum proteome and metabolome, adopting a hypothesis-generating approach. Findings indicated that control piglets escalated glucose usage as an enteric energy source, as evidenced by the increased abundance of PKLR and PCK2 proteins and decreased tissue glucose concentration. Additionally, the inclusion of seaweed fostered a rise in proteins linked to enhanced enterocyte structural integrity (ACTBL2, CRMP1, FLII, EML2 and MYLK), elevated peptidase activity (NAALADL1 and CAPNS1), and heightened anti-inflammatory activity (C3), underscoring improved intestinal function. In addition, seaweed-fed piglets showed a reduced abundance of proteins related to apoptosis (ERN2) and proteolysis (DPP4). Alginate lyase supplementation appeared to amplify the initial effects of seaweed-only feeding, by boosting the number of differential proteins within the same pathways. This amplification is potentially due to increased intracellular nutrient availability, making a compelling case for further exploration of this dietary approach. SIGNIFICANCE: Pig production used to rely heavily on antibiotics and zinc oxide to deal with post-weaning stress in a cost-effective way. Their negative repercussions on public health and the environment have motivated heavy restrictions, and a consequent search for alternative feed ingredients/supplements. One of such alternatives is Laminaria digitata, a brown seaweed whose prebiotic components that can help weaned piglets deal with nutritional stress, by improving their gut health and immune status. However, their recalcitrant cell walls have antinutritional properties, for which alginate lyase supplementation is a possible solution. By evaluating ileal metabolism as influenced by dietary seaweed and enzyme supplementation, we aim at discovering how the weaned piglet adapts to them and what are their effects on this important segment of the digestive system.


Assuntos
Laminaria , Alga Marinha , Animais , Suínos , Laminaria/química , Laminaria/metabolismo , Proteômica , Dieta , Suplementos Nutricionais/análise , Íleo/metabolismo , Polissacarídeos/metabolismo , Alga Marinha/química , Alga Marinha/metabolismo , Glucose , Ração Animal/análise
9.
Meat Sci ; 205: 109306, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37556971

RESUMO

The impact of the dietary incorporation of 7% Ulva lactuca, a green seaweed, on the quality and nutritional value of piglet's meat was assessed. U. lactuca is rich in nutrients and bioactive compounds but its cell wall is composed of complex polysaccharides that reduce their bioavailability. Therefore, the effect of supplementing piglet diets with exogenous carbohydrases was also assessed here. A total of 40 male weaned piglets were divided into four dietary groups, each with 10 piglets: control (wheat, maize and soybean meal-based diet), UL (7% U. lactuca replacing the control diet), UL + R (UL and 0.005% Rovabio®), and UL + E (UL and 0.01% ulvan lyase). The piglets were fed the diets for 2 weeks. The results showed that incorporating U. lactuca in piglet diets did not influence most of the meat quality traits (P > 0.05). However, the incorporation of U. lactuca with the commercial carbohydrase (UL + R) increased the amount of the docosahexaenoic acid (DHA; 22:6n-3) in their meat (P = 0.011) compared with the control, by 54%. In addition, meat from piglets fed seaweed diets showed a nearly two-fold increase in iodine contents (P < 0.001). Meat tenderness, juiciness and overall acceptability of piglets fed the control diet and the UL diet were lower than those fed the diets containing seaweed and carbohydrases (P < 0.001). Overall, the findings indicate that 7% U. lactuca in the diets of weaned piglets had no major detrimental effects on meat quality and their carbohydrase supplementation has the potential to improve meat sensory traits.


Assuntos
Ulva , Animais , Suínos , Masculino , Dieta/veterinária , Suplementos Nutricionais , Carne , Ração Animal/análise
10.
Sci Rep ; 13(1): 8784, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37258799

RESUMO

Ulva lactuca is a seaweed with antinutritional cell wall for monogastrics. Carbohydrate-Active enZymes (CAZymes) supplementation can potentially cause its disruption. This study evaluates four diets: Ctrl-control diet; UL-control + 7% U. lactuca (wild caught, powdered form); ULR-UL + 0.005% Rovabio® Excel AP; ULU-UL + 0.01% ulvan lyase on piglets' haematologic and serologic profiles, hepatic lipids and minerals. White blood cells and lymphocytes reached the highest values in piglets fed UL compared to control, and to control and ULR; respectively (P < 0.05). IgG levels were boosted by seaweed incorporation compared to control (P = 0.015). The glycaemic homeostasis was assured by the seaweed inclusion. Dietary seaweed decreased serum lipids (P < 0.001), with the exception of ULU, due to HDL-cholesterol increase (P < 0.001). Cortisol was decreased in ULR and ULU (P < 0.001). No systemic inflammation was observed (P > 0.05). While hepatic n-3 PUFA increased in piglets fed with seaweed diets due to increment of beneficial 22:5n-3 and 22:6n-3 fatty acids (P < 0.05), the opposite occurred for n-6 PUFA, PUFA/SFA and n-6/n-3 ratios (P < 0.05). Hepatic pigments were unchanged (P > 0.05). ULR reduced α-tocopherol levels (P = 0.036) and increased serum potassium levels (P < 0.001) compared to control. Seaweed contributed to overcome piglets' weaning stress, with some benefits of including CAZyme supplementation.


Assuntos
Ulva , Suínos , Animais , Desmame , Dieta , Ácidos Graxos , Suplementos Nutricionais , Ração Animal/análise
11.
Sci Rep ; 13(1): 6598, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087466

RESUMO

Seaweeds, such as Laminaria digitata, are a sustainable alternative to conventional feedstuffs for weaned piglet diets, improving their health and mitigating environmental impacts. L. digitata has a complex cell wall that can be difficult for monogastrics to digest. However, carbohydrate-active enzymes (CAZymes) such as Rovabio® Excel AP and alginate lyase can help break down these polysaccharides and render intracellular nutrients more accessible. This study aimed to evaluate the impact of 10% L. digitata feed inclusion and CAZyme supplementation on piglet blood cells, serum metabolites, liver lipid and mineral profiles. Forty weaned piglets were randomly assigned to one of four diets (n = 10 each): a control diet, 10% L. digitata (LA), 10% L. digitata + 0.005% Rovabio® Excel AP (LAR), and 10% L. digitata + 0.01% alginate lyase (LAL). After two weeks of trial, animals were slaughtered and liver and blood serum samples taken for analysis. The results showed that the LA and LAL diets increased blood lymphocytes, IgG and IgM, and decreased serum lipids, improving both cellular and humoral immune response and cardiovascular health. Dietary CAZymes reversed the anti-inflammatory and hematopoietic effects. Additionally, cortisol levels were reduced with seaweed inclusion compared to the control diet (P < 0.001). In the liver, total n-3 PUFA and n-6/n-3 ratio were increased and decreased, respectively, due to eicosapentaenoic acid and α-linolenic acid accumulation (P < 0.001). However, total liver mineral content was incorporated to a lesser extent with the combined seaweed and enzyme diets (P < 0.001), potentially indicating a negative effect on mineral bioavailability. Overall, results suggest that a 10% L. digitata inclusion can effectively improve piglet health by reducing stress during weaning, without the need for dietary CAZymes.


Assuntos
Laminaria , Alga Marinha , Animais , Ração Animal/análise , Células Sanguíneas , Dieta/veterinária , Suplementos Nutricionais/análise , Lipídeos , Fígado , Minerais , Soro , Suínos , Desmame
12.
Animals (Basel) ; 13(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36978557

RESUMO

Microalgae, such as Chlorella vulgaris (CV), have been identified as promising animal feed sources due to their high content of essential nutrients, including proteins, total lipids, n-3 polyunsaturated fatty acids, and pigments. This study aimed to review the digestibility, bioaccessibility, and bioavailability of nutrients from CV biomass, and to analyse strategies to enhance their digestibility in monogastric animal diets. The study conducted a systematic review of the literature from databases such as PubMed, Scopus, Google Scholar, and Web of Science, up until the end of January 2023. The results of adding CV to poultry and swine diets were diverse and depended on a number of variables. However, pre-treatments applied to CV biomass improved nutrient digestibility and accessibility. CV biomass, produced in a cost-effective manner, has the potential to serve as a supplement or substitute for expensive feed ingredients and improve animal health, physiology, and immune status. Variations in results may be due to differences in microalgal strain, cultivation conditions, and dietary inclusion levels, among other factors. This study provides new insights and perspectives into the utilization of CV biomass in animal diets, highlighting its potential as a valuable ingredient to improve nutrient utilization.

13.
Molecules ; 27(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36364251

RESUMO

The effect of a high incorporation level of Ulva lactuca, individually and supplemented with a Carbohydrate-Active enZyme (CAZyme) on broilers' plasma parameters and liver composition is assessed here. Twenty one-day-old Ross 308 male broilers were randomly assigned to one of four treatments (n = 10): corn/soybean meal based-diet (Control); based-diet with 15% U. lactuca (UL); UL diet with 0.005% of commercial carbohydrase mixture; and UL diet with 0.01% of recombinant ulvan lyase. Supplementing U. lactuca with the recombinant CAZyme slightly compromised broilers' growth by negatively affecting final body weight and average daily gain. The combination of U. lactuca with ulvan lyase also increased systemic lipemia through an increase in total lipids, triacylglycerols and VLDL-cholesterol (p < 0.001). Moreover, U. lactuca, regardless of the CAZyme supplementation, enhanced hepatic n-3 PUFA (mostly 20:5n-3) with positive decrease in n-6/n-3 ratio. However, broilers fed with U. lactuca with ulvan lyase reduced hepatic α- and γ-tocopherol concentrations relative to the control. Conversely, the high amount of pigments in macroalga diets led to an increase in hepatic ß-carotene, chlorophylls and total carotenoids. Furthermore, U. lactuca, alone or combined with CAZymes, enhanced hepatic total microminerals, including iron and manganese. Overall, plasma metabolites and liver composition changed favorably in broilers that were fed 15% of U. lactuca, regardless of enzyme supplementation.


Assuntos
Ulva , Animais , Masculino , Ração Animal/análise , Galinhas/metabolismo , Dieta , Suplementos Nutricionais , Fígado
14.
Foods ; 11(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36230060

RESUMO

Microalgae have emerged as novel sources for monogastric animals' diets since they are rich in many nutrients, including proteins. Arthrospira platensis is particularly rich in proteins (up to 76% of dry matter), lipids, minerals and pigments. However, its rigid peptidoglycan cell wall interferes with the digestibility, bio-accessibility and bioavailability of nutrients for monogastric animals. The aim of the present study was to evaluate the digestibility, bio-accessibility, bioavailability and protein quality of nutrients from A. platensis for poultry and swine feeding, searching all the studies available in PubMed, Web of Science, Scopus and Google Scholar in June 2022 concerning this subject. Overall, digestibility values of A. platensis proteins or amino acids varying from 66.1 to 68.7% for poultry (microalgae at 1% feed) and from 75.4 to 80.6% for swine (10% feed) have been reported. Therefore, the extraction of microalgae components using mechanical or non-mechanical pre-treatments is required to promote cell disruption and improve digestibility and bio-accessibility. Although A. platensis is a promising feedstuff to support future needs, it is important to perform more investigation concerning digestibility, dietary inclusion level and possible treatments to disrupt microalga cell walls and increase bioavailability of nutrients.

15.
Animals (Basel) ; 12(17)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36077957

RESUMO

Grape by-products are exceptional options for replacement of conventional and unsustainable feed sources, since large amounts are generated every year from the winery industry. However, the majority is wasted with severe environmental and economic consequences. The present review aimed to evaluate the effects of grape by-products on pig and poultry growth performance. The most recent literature was reviewed using ScienceDirect and PubMed databases and the results of a total of 16 and 38 papers for pigs and poultry, respectively, were assessed. Fewer studies are documented for pig, but the incorporation of grape by-products up to 9% feed led to an improvement in growth performance with an increase in average daily gain. Conversely, lower levels (<3% feed) are needed to achieve these results in poultry. The beneficial effects of grape by-products on animal performance are mainly due to their antioxidant, antimicrobial, and gut morphology modulator properties, but their high level of cell wall lignification and content of polyphenolic compounds (e.g., tannin) limits nutrient digestion and absorption by monogastric animals. The use of exogenous enzymes or mechanical/chemical processes can provide additional nutritional value to these products by improving nutrient bioavailability. Overall, the valorization of grape by-products is imperative to use them as feed alternatives and intestinal health promoters, thereby contributing to boost circular agricultural economy.

16.
Foods ; 11(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36140881

RESUMO

Grape by-products could be used in monogastric animals' nutrition to reduce feeding costs with conventional crops (e.g., maize and soybean meal) and to improve meat quality. The main grape by-products with the largest expression worldwide, particularly in the Mediterranean region, are grape pomace, grape seed, grape seed oil and grape skins. These by-products are rich sources of bioactive polyphenols, dietary fiber and polyunsaturated fatty acids (PUFA), more specifically, the beneficial n-3 PUFA, that could be transferred to pork and poultry meat. The potential biological activities, mainly associated with antimicrobial and antioxidant properties, make them putative candidates as feed supplements and/or ingredients capable of enhancing meat quality traits, such as color, lipid oxidation and shelf life. However, grape by-products face several limitations, namely, the high level of lignified cell wall and tannin content, both antinutritional compounds that limit nutrients absorption. Therefore, it is imperative to improve grape by-products' bioavailability, taking advantage of enzyme supplementation or pretreatment processes, to use them as feed alternatives contributing to boost a circular agricultural economy. The present review summarizes the current applications and challenges of using grape by-products from the agro-industrial sector in pig and poultry diets aiming at improving meat quality and nutritional value.

17.
Animals (Basel) ; 12(13)2022 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-35804618

RESUMO

The aim of the study was to test if feeding 15% U. lactuca to broilers, alone or combined with carbohydrases, enhanced meat nutritional quality, without compromising growth performance. One hundred and twenty 22-day-old broilers were allocated to the following diets and replicated 10 times for 14 days: (1) maize and soy-based diet (control); (2) control with 15% U. lactuca (UL); (3) UL diet with 0.005% commercial carbohydrase mixture (ULC); and (4) UL diet with 0.01% ulvan lyase (ULE). Final body weight and average daily gain decreased (p < 0.050) with the ULE diet compared with the control, but no significant differences were found for the other diets. The intestinal viscosity increased (p < 0.001) with all alga diets but was lowered (p < 0.050) in the ileum with the ULE diet, relative to UL and ULC diets. Meat lightness and redness values, off-flavours, and total carotenoids increased (p < 0.001), while yellow values, tenderness, juiciness, overall acceptability, α- and γ-tocopherol, and total lipids decreased (p < 0.001) with alga diets. The n-3 polyunsaturated fatty acids (PUFA) increased (p < 0.050), and the n-6/n-3 PUFA ratio decreased (p < 0.001) with the ULE diet. Total minerals in meat increased (p < 0.001) with alga diets, conversely to sodium and zinc (p < 0.001). Feeding 15% of U. lactuca to broilers did not impair growth but increased meat nutritional value through the accumulation of health-promoting antioxidant carotenoids, n-3 PUFA and total minerals, although reducing overall meat acceptability.

18.
Anim Nutr ; 9: 184-192, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35600544

RESUMO

Green macroalgae, e.g., Ulva lactuca, are valuable bioactive sources of nutrients; but algae recalcitrant cell walls, composed of a complex cross-linked matrix of polysaccharides, can compromise their utilization as feedstuffs for monogastric animals. This study aimed to evaluate the ability of pre-selected Carbohydrate-Active enZymes (CAZymes) and sulfatases to degrade U. lactuca cell walls and release nutritive compounds. A databank of 199 recombinant CAZymes and sulfatases was tested in vitro for their action towards U. lactuca cell wall polysaccharides. The enzymes were incubated with the macroalga, either alone or in combination, to release reducing sugars and decrease fluorescence intensity of Calcofluor White stained cell walls. The individual action of a polysaccharide lyase family 25 (PL25), an ulvan lyase, was shown to be the most efficient in cell wall disruption. The ulvan lyase treatment, in triplicate measures, promoted the release of 4.54 g/L (P < 0.001) reducing sugars, a mono- and oligosaccharides release of 11.4 and 11.2 mmol/100 g of dried alga (P < 0.01), respectively, and a decrease of 41.7% (P < 0.001) in cell wall fluorescence, in comparison to control. The ability of ulvan lyase treatment to promote the release of nutritional compounds from alga biomass was also evaluated. A release of some monounsaturated fatty acids was observed, particularly the health beneficial 18:1c9 (P < 0.001). However, no significant release of total fatty acids (P > 0.05), proteins (P = 0.861) or pigments (P > 0.05) was found. These results highlight the capacity of a single recombinant ulvan lyase (PL25 family) to incompletely disrupt U. lactuca cell walls. This enzyme could enhance the bioaccessibility of U. lactuca bioactive products with promising utilization in the feed industry.

19.
Animals (Basel) ; 12(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35454252

RESUMO

We hypothesized that dietary inclusion of 15% Laminaria digitata, supplemented or not with carbohydrases, could improve the nutritional value of poultry meat without impairing animal growth performance. A total of 120 22-day old broilers were fed the following dietary treatments (n = 10) for 14 days: cereal-based diet (control); control diet with 15% L. digitata (LA); LA diet with 0.005% Rovabio® Excel AP (LAR); LA diet with 0.01% alginate lyase (LAE). Final body weight was lower and feed conversion ratio higher with LA diet than with the control. The ileal viscosity increased with LA and LAR diets relative to control but without differences between LAE and control. The pH of thigh meat was higher, and the redness value of breast was lower with LA diet than with control. Meat overall acceptability was positively scored for all treatments. The γ-tocopherol decreased, whereas total chlorophylls and carotenoids increased in meat with alga diets relative to control. The percentage of n-3 polyunsaturated fatty acids (PUFA) and accumulation of bromine and iodine in meat increased with alga diets compared with control. Feeding 15% of L. digitata to broilers impaired growth performance but enhanced meat quality by increasing antioxidant pigments, with beneficial effects on n-3 PUFA and iodine.

20.
Res Vet Sci ; 144: 44-53, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35066314

RESUMO

The implication of high dietary level of Chlorella vulgaris, individually and supplemented with two carbohydrase mixtures, on pigs' health and liver metabolism was assessed in this study. Forty crossbred (Large White × Landrace sows crossed with Pietrain boars) entire male pigs were randomly allocated to the following feeding treatments (n = 10): cereal-soybean meal basal diet (control); basal diet with 5% C. vulgaris; basal diet with 5% C. vulgaris supplemented with 0.005% Rovabio® Excel AP; and basal diet with 5% C. vulgaris supplemented with 0.01% of a preselected four-CAZyme mixture. The trial lasted from 59.1 ± 5.69 kg of initial live weight to 101 ± 1.9 kg of slaughter weight. Data indicate that this high dietary level of C. vulgaris has impact on several blood parameters of finishing pigs. However, the most relevant health outcome observed was a strong immunosuppressive effect promoted by the microalga, which increases pigs' susceptibility to infection diseases. In addition, the dietary incorporation of C. vulgaris reduced the systemic antioxidant capacity of pigs. In turn, the dietary supplementation with the four-CAZyme mixture promoted a clear decrease on some blood parameters compared with the control group. Regarding hepatic lipids, pigs fed C. vulgaris diets, had an increased hepatic content of n-3 PUFA, with a consequent decrease on the n-6/n-3 ratio. In conclusion, the use of C. vulgaris as feed ingredient appears to be safe under controlled experimental conditions. However, it is imperative test it in industrial production systems, with more stressful and less hygienic environments.


Assuntos
Chlorella vulgaris , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Suplementos Nutricionais , Glicosídeo Hidrolases , Nível de Saúde , Metabolismo dos Lipídeos , Fígado/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA