Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 918: 170387, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38280604

RESUMO

Glyphosate hormesis, identified as a potential means to enhance crop yields, encounters practical constraints because it is typically assessed through foliar applications. The expression and extend of hormesis in this approach are influenced by unpredictable environmental conditions, highlighting the need to explore alternative glyphosate application methods, such as seed treatment. This study aimed to assess glyphosate hormesis on growth rates and biomass accumulation in seedlings soybean cultivars. Two dose-response experiments [doses from 0 to 2880 g acid equivalent (ae) ha-1], one via foliar and one via seed, were conducted on three soybean cultivars [one non-glyphosate-resistant (NGR) and two glyphosate-resistant (GR, one RR and one RR2)]. In a subsequent experiment, three safe glyphosate doses (0, 90 and 180 g ae ha-1) applied via seed were evaluated on four soybean cultivars (two RR and two RR2). For foliar applications, the range of glyphosate doses increasing growth rates and dry biomass by 12-28 % were 5.6-45 g ae ha-1 for the NGR cultivar, of 45-720 g ae ha-1 for RR and of 11.25-180 g ae ha-1 for RR2. In the seed treatment, biomass increases of 16-60 % occurred at 45-180 g ae ha-1 for the NGR and RR cultivars, and 90-360 g ae ha-1 for RR2. Glyphosate doses of 90 and 180 g ae ha-1, applied via seeds, provided greater growth and biomass accumulation for the RR and RR2 soybean cultivars. Both foliar and seed applications of glyphosate increased growth and biomass accumulation in soybean cultivars, with seed treatments showing greater and more consistent enhancements. These findings propose practical and viable alternative for harnessing glyphosate hormesis to facilitate the early development of soybeans and potentially enhance crop yield.


Assuntos
Glifosato , Herbicidas , Glycine max , Plântula , Glicina/toxicidade , Hormese , Herbicidas/toxicidade , Biomassa , Sementes
2.
Plants (Basel) ; 12(12)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37375876

RESUMO

Glyphosate is a nonselective herbicide of systemic action that inhibits the enzyme 5-enolpyruvylshikimate-3-phosphate synthase, thus compromising amino acid production and consequently the growth and development of susceptible plants. The objective of this study was to evaluate the hormetic effect of glyphosate on the morphology, physiology, and biochemistry of coffee plants. Coffee seedlings (Coffea arabica cv Catuaí Vermelho IAC-144) were transplanted into pots filled with a mixture of soil and substrate and subjected to ten doses of glyphosate: 0, 11.25, 22.5, 45, 90, 180, 360, 720, 1440, and 2880 g acid equivalent (ae) ha-1. Evaluations were performed using the morphological, physiological, and biochemical variables. Data analysis for the confirmation of hormesis occurred with the application of mathematical models. The hormetic effect of glyphosate on coffee plant morphology was determined by the variables plant height, number of leaves, leaf area, and leaf, stem, and total dry mass. Doses from 14.5 to 30 g ae ha-1 caused the highest stimulation. In the physiological analyses, the highest stimulation was observed upon CO2 assimilation, transpiration, stomatal conductance, carboxylation efficiency, intrinsic water use efficiency, electron transport rate, and photochemical efficiency of photosystem II at doses ranging from 4.4 to 55 g ae ha-1. The biochemical analyses revealed significant increases in the concentrations of quinic acid, salicylic acid, caffeic acid, and coumaric acid, with maximum stimulation at doses between 3 and 140 g ae ha-1. Thus, the application of low doses of glyphosate has positive effects on the morphology, physiology, and biochemistry of coffee plants.

3.
Plants (Basel) ; 11(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297822

RESUMO

2,4-D and dicamba are used in the postemergence management of eudicotyledonous weeds in different crops, most of which are grown under no-tillage systems. Due to the application methods for these products, their dynamics in straw and their residual action in soil have rarely been explored. Thus, the objective of this study was to evaluate the dynamics of 2,4-D and dicamba that have been applied to corn straw and to verify their relationship with residual control action in weeds. In the dynamics experiments, the herbicides were applied to 5 t ha-1 of straw, and rainfall simulations were performed with variable amounts and at different periods after application to evaluate herbicide movement in the straw. In the residual action experiments, the species Digitaria insularis, Conyza spp., Bidens pilosa, Amaranthus hybridus, Euphorbia heterophylla, and Eleusine indica were sown in trays, and 2,4-D and dicamba were applied directly to the soil, to the soil with the subsequent addition of the straw, and to the straw; all of these applications were followed by a simulation of 10 mm of rain. The physical effect of the straw and the efficacy of the herbicides in terms of pre-emergence control of the weed species were evaluated. The leaching of 2,4-D and dicamba from the corn straw increased with a higher volume of rainfall, and the longer the drought period was, the lower the final amount of herbicide that leached. The presence of the corn straw on the soil exerted a physical control effect on Conyza spp.; significantly reduced the infestation of D. insularis, B. pilosa, A. hybridus, and E. indica; and broadened the control spectrum of 2,4-D and dicamba, assisting in its residual action and ensuring high levels of control of the evaluated weeds. In the absence of the straw, 2,4-D effectively controlled the pre-emergence of D. insularis, Conyza spp., and A. hybridus, and dicamba effectively controlled D. insularis, Conyza spp., B. pilosa, A. hybridus, E. heterophylla, and E. indica.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...