Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 11: 599165, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33324349

RESUMO

ARHGAP21 is a RhoGAP protein implicated in the modulation of insulin secretion and energy metabolism. ARHGAP21 transient-inhibition increase glucose-stimulated insulin secretion (GSIS) in neonatal islets; however, ARHGAP21 heterozygote mice have a reduced insulin secretion. These discrepancies are not totally understood, and it might be related to functional maturation of beta cells and peripheral sensitivity. Here, we investigated the real ARHGAP21 role in the insulin secretion process using an adult mouse model of acute ARHGAP21 inhibition, induced by antisense. After ARHGAP21 knockdown induction by antisense injection in 60-day old male mice, we investigated glucose and insulin tolerance test, glucose-induced insulin secretion, glucose-induced intracellular calcium dynamics, and gene expression. Our results showed that ARHGAP21 acts negatively in the GSIS of adult islet. This effect seems to be due to the modulation of important points of insulin secretion process, such as the energy metabolism (PGC1α), Ca2+ signalization (SYTVII), granule-extrusion (SNAP25), and cell-cell interaction (CX36). Therefore, based on these finds, ARHGAP21 may be an important target in Diabetes Mellitus (DM) treatment.


Assuntos
Proteínas Ativadoras de GTPase/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/farmacologia , Hiperinsulinismo/prevenção & controle , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Animais , Homeostase , Hiperinsulinismo/metabolismo , Hiperinsulinismo/patologia , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Edulcorantes/farmacologia
2.
J Cell Physiol ; 234(6): 9802-9809, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30370604

RESUMO

Human life expectancy is increasing faster lately and, consequently, the number of patients with age-related diseases such as type 2 diabetes (T2D) is rising every year. Cases of hyperinsulinemia have been extensively reported in elderly subjects and this alteration in blood insulin concentration is postulated to be a cause of insulin resistance, which in some cases triggers T2D onset. Thus, it is important to know the underlying mechanisms of age-dependent hyperinsulinemia to find new strategies to prevent T2D in elderly subjects. Two processes control blood insulin concentration: Insulin secretion by the endocrine portion of the pancreas and insulin clearance, which occurs mainly in the liver by the action of the insulin-degrading enzyme (IDE). Here, we demonstrated that 10-month-old mice (old) display increased body and fat pad weight, compared with 3-month-old mice (control), and these alterations were accompanied by glucose and insulin intolerance. We also confirm hyperinsulinemia in the old mice, which was related to increased insulin secretion but not to reduced insulin clearance. Although no changes in insulin clearance were observed, IDE activity was lower in the liver of old compared with the control mice. However, this decreased IDE activity was compensated by increased expression of IDE protein in the liver, thus explaining the similar insulin clearance observed in both groups. In conclusion, at the beginning of aging, 10-month-old mice do not display any alterations in insulin clearance. Therefore, hyperinsulinemia is initiated primarily due to a higher insulin secretion in the age-related metabolic dysfunction in mice.


Assuntos
Envelhecimento , Glucose/metabolismo , Hiperinsulinismo/etiologia , Insulina/metabolismo , Animais , Área Sob a Curva , Glicemia , Peso Corporal , Glucose/farmacologia , Homeostase , Hiperinsulinismo/metabolismo , Insulina/sangue , Insulisina , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
J Cell Physiol ; 233(9): 7112-7119, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29574752

RESUMO

GTPase activating proteins (GAPs) are ubiquitously expressed, and their role in cellular adhesion and membrane traffic processes have been well described. TBC1D1, which is a Rab-GAP, is necessary for adequate glucose uptake by muscle cells, whereas increased TCGAP, which is a Rho-GAP, decreases GLUT4 translocation, and consequently glucose uptake in adipocytes. Here, we assessed the possible involvement of ARHGAP21, a Rho-GAP protein, in glucose homeostasis. For this purpose, wild type mice and ARHGAP21 transgenic whole-body gene-deficiency mice (heterozygous mice, expressing approximately 50% of ARHGAP21) were fed either chow (Ctl and Het) or high-fat diet (Ctl-HFD and Het-HFD). Het-HFD mice showed a reduction in white fat storage, reflected in a lower body weight gain. These mice also displayed an improvement in insulin sensitivity and glucose tolerance, which likely contributed to reduced insulin secretion and pancreatic beta cell area. The reduction of body weight was also observed in Het mice and this phenomenon was associated with an increase in brown adipose tissue and reduced muscle weight, without alteration in glucose-insulin homeostasis. In conclusion, the whole body ARHGAP21 reduction improved glucose homeostasis and protected against diet-induced obesity specifically in Het-HFD mice. However, the mechanism by which ARHGAP21 leads to these outcomes requires further investigation.


Assuntos
Dieta Hiperlipídica , Proteínas Ativadoras de GTPase/metabolismo , Glucose/metabolismo , Homeostase , Tecido Adiposo , Animais , Peso Corporal , Heterozigoto , Resistência à Insulina , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Camundongos Obesos , Camundongos Transgênicos , Tamanho do Órgão
4.
Sci Rep ; 7: 46750, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429777

RESUMO

Impairment of the insulin-degrading enzyme (IDE) is associated with obesity and type 2 diabetes mellitus (T2DM). Here, we used 4-mo-old male C57BL/6 interleukin-6 (IL-6) knockout mice (KO) to investigate the role of this cytokine on IDE expression and activity. IL-6 KO mice displayed lower insulin clearance in the liver and skeletal muscle, compared with wild type (WT), due to reduced IDE expression and activity. We also observed that after 3-h incubation, IL-6, 50 and 100 ng ml-1, increased the expression of IDE in HEPG2 and C2C12 cells, respectively. In addition, during acute exercise, the inhibition of IL-6 prevented an increase in insulin clearance and IDE expression and activity, mainly in the skeletal muscle. Finally, IL-6 and IDE concentrations were significantly increased in plasma from humans, after an acute exercise, compared to pre-exercise values. Although the increase in plasma IDE activity was only marginal, a positive correlation between IL-6 and IDE activity, and between IL-6 and IDE protein expression, was observed. Our outcomes indicate a novel function of IL-6 on the insulin metabolism expanding the possibilities for new potential therapeutic strategies, focused on insulin degradation, for the treatment and/or prevention of diseases related to hyperinsulinemia, such as obesity and T2DM.


Assuntos
Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insulina/metabolismo , Insulisina/genética , Interleucina-6/farmacologia , Animais , Linhagem Celular , Células Hep G2 , Humanos , Insulisina/sangue , Insulisina/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Condicionamento Físico Animal
5.
PLoS One ; 11(7): e0160239, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27467214

RESUMO

The effects of exercise on insulin clearance and IDE expression are not yet fully elucidated. Here, we have explored the effect of acute exercise on insulin clearance and IDE expression in lean mice. Male Swiss mice were subjected to a single bout of exercise on a speed/angle controlled treadmill for 3-h at approximately 60-70% of maximum oxygen consumption. As expected, acute exercise reduced glycemia and insulinemia, and increased insulin tolerance. The activity of AMPK-ACC, but not of IR-Akt, pathway was increased in the liver and skeletal muscle of trained mice. In an apparent contrast to the reduced insulinemia, glucose-stimulated insulin secretion was increased in isolated islets of these mice. However, insulin clearance was increased after acute exercise and was accompanied by increased expression of the insulin-degrading enzyme (IDE), in the liver and skeletal muscle. Finally, C2C12, but not HEPG2 cells, incubated at different concentrations of 5-aminoimidazole-4-carboxamide-1-ß-d-ribofuranoside (AICAR) for 3-h, showed increased expression of IDE. In conclusion, acute exercise increases insulin clearance, probably due to an augmentation of IDE expression in the liver and skeletal muscle. The elevated IDE expression, in the skeletal muscle, seems to be mediated by activation of AMPK-ACC pathway, in response to exercise. We believe that the increase in the IDE expression, comprise a safety measure to maintain glycemia at or close to physiological levels, turning physical exercise more effective and safe.


Assuntos
Insulina/metabolismo , Fígado/enzimologia , Músculo Esquelético/enzimologia , Condicionamento Físico Animal , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular , Ativação Enzimática , Células Hep G2 , Humanos , Hidrólise , Insulisina , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Consumo de Oxigênio
6.
J Endocrinol ; 229(3): 221-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27000684

RESUMO

The aim of this study was to investigate the insulin clearance in diet-induced obese (DIO) mice submitted to acute endurance exercise (3h of treadmill exercise at 60-70% VO2max). Glucose-stimulated insulin secretion in isolated islets; ipGTT; ipITT; ipPTT; in vivo insulin clearance; protein expression in liver, skeletal muscle, and adipose tissue (insulin degrading enzyme (IDE), insulin receptor subunitß(IRß), phospho-Akt (p-Akt) and phospho-AMPK (p-AMPK)), and the activity of IDE in the liver and skeletal muscle were accessed. In DIO mice, acute exercise reduced fasting glycemia and insulinemia, improved glucose and insulin tolerance, reduced hepatic glucose production, and increased p-Akt protein levels in liver and skeletal muscle and p-AMPK protein levels in skeletal muscle. In addition, insulin secretion was reduced, whereas insulin clearance and the expression of IDE and IRß were increased in liver and skeletal muscle. Finally, IDE activity was increased only in skeletal muscle. In conclusion, we propose that the increased insulin clearance and IDE expression and activity, primarily, in skeletal muscle, constitute an additional mechanism, whereby physical exercise reduces insulinemia in DIO mice.


Assuntos
Insulina/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Condicionamento Físico Animal/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Peptídeo C/sangue , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Insulina/sangue , Insulisina/metabolismo , Fígado/metabolismo , Masculino , Taxa de Depuração Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Músculo Esquelético/metabolismo , Obesidade/etiologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor de Insulina/metabolismo
7.
PLoS One ; 10(3): e0118809, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822220

RESUMO

INTRODUCTION: Endurance training improves peripheral insulin sensitivity in the liver and the skeletal muscle, but the mechanism for this effect is poorly understood. Recently, it was proposed that insulin clearance plays a major role in both glucose homeostasis and insulin sensitivity. Therefore, our goal was to determine the mechanism by which endurance training improves insulin sensitivity and how it regulates insulin clearance in mice. METHODS: Mice were treadmill-trained for 4 weeks at 70-80% of maximal oxygen consumption (VO2 max) for 60 min, 5 days a week. The glucose tolerance and the insulin resistance were determined using an IPGTT and an IPITT, respectively, and the insulin decay rate was calculated from the insulin clearance. Protein expression and phosphorylation in the liver and the skeletal muscle were ascertained by Western blot. RESULTS: Trained mice exhibited an increased VO2 max, time to exhaustion, glucose tolerance and insulin sensitivity. They had smaller fat pads and lower plasma concentrations of insulin and glucose. Endurance training inhibited insulin clearance and reduced expression of IDE in the liver, while also inhibiting insulin secretion by pancreatic islets. There was increased phosphorylation of both the canonical (IR-AKT) and the non-canonical (CaMKII-AMPK-ACC) insulin pathways in the liver of trained mice, whereas only the CaMKII-AMPK pathway was increased in the skeletal muscle. CONCLUSION: Endurance training improved glucose homeostasis not only by increasing peripheral insulin sensitivity but also by decreasing insulin clearance and reducing IDE expression in the liver.


Assuntos
Resistência à Insulina , Insulina/sangue , Insulisina/metabolismo , Esforço Físico , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Glicemia/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Insulina/metabolismo , Insulisina/genética , Ilhotas Pancreáticas/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Receptor de Insulina/metabolismo , Transdução de Sinais
8.
Amino Acids ; 47(4): 745-55, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25575490

RESUMO

Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160(Thr-642) (AKT substrate of 160 kDa) and AMPK(Thr-172) (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis.


Assuntos
Suplementos Nutricionais/análise , Glucose/metabolismo , Leucina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Feminino , Homeostase , Humanos , Insulina/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Resistência Física , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Natação , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
9.
Int J Endocrinol ; 2014: 983453, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25313308

RESUMO

Glucocorticoid (GC) therapies may adversely cause insulin resistance (IR) that lead to a compensatory hyperinsulinemia due to insulin hypersecretion. The increased ß-cell function is associated with increased insulin signaling that has the protein kinase B (AKT) substrate with 160 kDa (AS160) as an important downstream AKT effector. In muscle, both insulin and AMP-activated protein kinase (AMPK) signaling phosphorylate and inactivate AS160, which favors the glucose transporter (GLUT)-4 translocation to plasma membrane. Whether AS160 phosphorylation is modulated in islets from GC-treated subjects is unknown. For this, two animal models, Swiss mice and Wistar rats, were treated with dexamethasone (DEX) (1 mg/kg body weight) for 5 consecutive days. DEX treatment induced IR, hyperinsulinemia, and dyslipidemia in both species, but glucose intolerance and hyperglycemia only in rats. DEX treatment caused increased insulin secretion in response to glucose and augmented ß-cell mass in both species that were associated with increased islet content and increased phosphorylation of the AS160 protein. Protein AKT phosphorylation, but not AMPK phosphorylation, was found significantly enhanced in islets from DEX-treated animals. We conclude that the augmented ß-cell function developed in response to the GC-induced IR involves inhibition of the islet AS160 protein activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...