Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 797, 2023 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-37952023

RESUMO

Tidal marshes store large amounts of organic carbon in their soils. Field data quantifying soil organic carbon (SOC) stocks provide an important resource for researchers, natural resource managers, and policy-makers working towards the protection, restoration, and valuation of these ecosystems. We collated a global dataset of tidal marsh soil organic carbon (MarSOC) from 99 studies that includes location, soil depth, site name, dry bulk density, SOC, and/or soil organic matter (SOM). The MarSOC dataset includes 17,454 data points from 2,329 unique locations, and 29 countries. We generated a general transfer function for the conversion of SOM to SOC. Using this data we estimated a median (± median absolute deviation) value of 79.2 ± 38.1 Mg SOC ha-1 in the top 30 cm and 231 ± 134 Mg SOC ha-1 in the top 1 m of tidal marsh soils globally. This data can serve as a basis for future work, and may contribute to incorporation of tidal marsh ecosystems into climate change mitigation and adaptation strategies and policies.

2.
Glob Chang Biol ; 24(11): 5218-5230, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30270555

RESUMO

Human-caused shifts in carbon (C) cycling and biotic exchange are defining characteristics of the Anthropocene. In marine systems, saltmarsh, seagrass, and mangrove habitats-collectively known as "blue carbon" and coastal vegetated habitats (CVHs)-are a leading sequester of global C and increasingly impacted by exotic species invasions. There is growing interest in the effect of invasion by a diverse pool of exotic species on C storage and the implications for ecosystem-based management of these systems. In a global meta-analysis, we synthesized data from 104 papers that provided 345 comparisons of habitat-level response (plant and soil C storage) from paired invaded and uninvaded sites. We found an overall net effect of significantly higher C pools in invaded CVHs amounting to 40% (±16%) higher C storage than uninvaded habitat, but effects differed among types of invaders. Elevated C storage was driven by blue C-forming plant invaders (saltmarsh grasses, seagrasses, and mangrove trees) that intensify biomass per unit area, extend and elevate coastal wetlands, and convert coastal mudflats into C-rich vegetated habitat. Introduced animal and structurally distinct primary producers had significant negative effects on C pools, driven by herbivory, trampling, and native species displacement. The role of invasion manifested differently among habitat types, with significant C storage increases in saltmarshes, decreases in seagrass, and no significant effect in mangroves. There were also counter-directional effects by the same species in different systems or locations, which underscores the importance of combining data mining with analyses of mean effect sizes in meta-analyses. Our study provides a quantitative basis for understanding differential effects of invasion on blue C habitats and will inform conservation strategies that need to balance management decisions involving invasion, C storage, and a range of other marine biodiversity and habitat functions in these coastal systems.


Assuntos
Ciclo do Carbono , Carbono , Ecossistema , Espécies Introduzidas , Animais , Biodiversidade , Biomassa , Sequestro de Carbono , Humanos , Plantas , Poaceae , Solo , Áreas Alagadas
3.
Sci Rep ; 8(1): 5393, 2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29599510

RESUMO

Coastal wetlands are important carbon sinks globally, but their ability to store carbon hinges on their nitrogen (N) supply and N uptake dynamics of dominant plant species. In terrestrial ecosystems, uptake of nitrate (NO3-) and ammonium (NH4+) through roots can strongly influence N acquisition rates and their responses to environmental factors such as rising atmospheric CO2 and eutrophication. We examined the 15N uptake kinetics of three dominant plant species in North American coastal wetlands (Spartina patens, C4 grass; Phragmites australis, C3 grass; Schoenoplectus americanus, C3 sedge) under ambient and elevated CO2 conditions. We further related our results to the productivity response of these species in two long-term field experiments. S. patens had the greatest uptake rates for NO3- and NH4+ under ambient conditions, suggesting that N uptake kinetics may underlie its strong productivity response to N in the field. Elevated CO2 increased NH4+ and NO3- uptake rates for S. patens, but had negative effects on NO3- uptake rates in P. australis and no effects on S. americanus. We suggest that N uptake kinetics may explain differences in plant community composition in coastal wetlands and that CO2-induced shifts, in combination with N proliferation, could alter ecosystem-scale productivity patterns of saltmarshes globally.


Assuntos
Cyperaceae/metabolismo , Nitrogênio/metabolismo , Poaceae/metabolismo , Compostos de Amônio/metabolismo , Biomassa , Cyperaceae/crescimento & desenvolvimento , Ecossistema , Cinética , Nitratos/metabolismo , Poaceae/crescimento & desenvolvimento , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...