Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Antimicrob Agents ; : 107340, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299599

RESUMO

The matrix of extracellular polymeric substances (EPS) present in biofilms greatly amplifies the problem of bacterial infections, protecting bacteria against antimicrobial treatments and eventually leading to bacterial resistance. The need for alternative treatments that destroy the EPS matrix becomes evident. N-acetylcysteine (NAC) is one option that presents diverse effects against bacteria; however, the different mechanisms of action of NAC in biofilms have yet to be elucidated. In this work, we performed microscopy studies at micro and nano scales to address the effects of NAC at single cell level and early-stage biofilms of the Xylella fastidiosa phytopathogen. We show the physical effects of NAC on the adhesion surface and the different types of EPS, as well as the mechanical response of individual bacteria to NAC concentrations between 2 and 20 mg/mL. NAC modified the conditioning film on the substrate, broke down the soluble EPS, resulting in the release of adherent bacteria, decreased the volume of loosely bound EPS, and disrupted the biofilm matrix. Tightly bound EPS suffered structural alterations despite no solid evidence of its removal. In addition, bacterial force measurements upon NAC action performed with InP nanowire arrays showed an enhanced momentum transfer to the nanowires due to increased cell mobility resulting from EPS removal. Our results clearly show that conditioning film and soluble EPS play a key role in cell adhesion control and that NAC alters EPS structure, providing solid evidence that NAC actuates mainly on EPS removal, both at single cell and biofilm levels.

2.
Ultramicroscopy ; 259: 113927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38330596

RESUMO

The association of scanning transmission electron microscopy (STEM) and detection of a diffraction pattern at each probe position (so-called 4D-STEM) represents one of the most promising approaches to analyze structural properties of materials with nanometric resolution and low irradiation levels. This is widely used for texture analysis of materials using automated crystal orientation mapping (ACOM). Herein, we perform orientation mapping in InP nanowires exploiting precession electron diffraction (PED) patterns acquired by an axial CMOS camera. Crystal orientation is determined at each probe position by the quantitative analysis of diffracted intensities minimizing a residue comparing experiments and simulations in analogy to x-ray structural refinement. Our simulations are based on the two-beam dynamical diffraction approximation and yield a high angular precision (∼0.03°), much lower than the traditional ACOM based on pattern matching algorithms (∼1°). We anticipate that simultaneous exploration of both spot positions and high precision crystal misorientation will allow the exploration of the whole potentiality provided by PED-based 4D-STEM for the characterization of deformation fields in nanomaterials.

3.
Front Bioeng Biotechnol ; 11: 1254299, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37811378

RESUMO

Mammaplasty is a widely performed surgical procedure worldwide, utilized for breast reconstruction, in the context of breast cancer treatment, and aesthetic purposes. To enhance post-operative outcomes and reduce risks (hematoma with required evacuation, capsular contracture, implant-associated infection and others), the controlled release of medicaments can be achieved using drug delivery systems based on cyclodextrins (CDs). In this study, our objective was to functionalize commercially available silicone breast implants with smooth and textured surfaces through in-situ polymerization of two CDs: ß-CD/citric acid and 2-hydroxypropyl-ß-CD/citric acid. This functionalization serves as a local drug delivery system for the controlled release of therapeutic molecules that potentially can be a preventive treatment for post-operative complications in mammaplasty interventions. Initially, we evaluated the pre-treatment of sample surfaces with O2 plasma, followed by chitosan grafting. Subsequently, in-situ polymerization using both types of CDs was performed on implants. The results demonstrated that the proposed pre-treatment significantly increased the polymerization yield. The functionalized samples were characterized using microscopic and physicochemical techniques. To evaluate the efficacy of the proposed system for controlled drug delivery in augmentation mammaplasty, three different molecules were utilized: pirfenidone (PFD) for capsular contracture prevention, Rose Bengal (RB) as anticancer agent, and KR-12 peptide (KR-12) to prevent bacterial infection. The release kinetics of PFD, RB, and KR-12 were analyzed using the Korsmeyer-Peppas and monolithic solution mathematical models to identify the respective delivery mechanisms. The antibacterial effect of KR-12 was assessed against Staphylococcus epidermidis and Pseudomonas aeruginosa, revealing that the antibacterial rate of functionalized samples loaded with KR-12 was dependent on the diffusion coefficients. Finally, due to the immunomodulatory properties of KR-12 peptide on epithelial cells, this type of cells was employed to investigate the cytotoxicity of the functionalized samples. These assays confirmed the superior properties of functionalized samples compared to unprotected implants.

4.
ACS Appl Bio Mater ; 5(10): 4903-4912, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36162102

RESUMO

SU-8 polymer is an excellent platform for diverse applications due to its high aspect ratio of micro/nanostructure fabrication and exceptional physicochemical and biocompatible properties. Although SU-8 polymer has often been investigated for various biological applications, how its surface properties influence the interaction of bacterial cells with the substrate and its colonization is poorly understood. In this work, we tailor SU-8 nanoscale surface properties to investigate single-cell motility, adhesion, and successive colonization of phytopathogenic bacteria, Xylella fastidiosa. Different surface properties of SU-8 thin films have been prepared using photolithography processing and oxygen plasma treatment. A more significant density of carboxyl groups in hydrophilic plasma-treated SU-8 surfaces promotes faster cell motility in the earlier growth stage. The hydrophobic nature of pristine SU-8 surfaces shows no trackable bacterial motility and 5-10 times more single cells adhered to the surface than its plasma-treated counterpart. In addition, plasma-treated SU-8 samples suppressed bacterial adhesion, with surfaces showing less than 5% coverage. These results not only showcase that SU-8 surface properties can impact the spatiotemporal bacterial behavior but also provide insights into pathogens' prominent ability to evolve and adapt to different surface properties.


Assuntos
Biofilmes , Polímeros , Polímeros/farmacologia , Aderência Bacteriana , Propriedades de Superfície , Membrana Celular
5.
Microsc Microanal ; : 1-9, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35431023

RESUMO

Analytical studies of nanoparticles (NPs) are frequently based on huge datasets derived from hyperspectral images acquired using scanning transmission electron microscopy. These large datasets require machine learning computational tools to reduce dimensionality and extract relevant information. Principal component analysis (PCA) is a commonly used procedure to reconstruct information and generate a denoised dataset; however, several open questions remain regarding the accuracy and precision of reconstructions. Here, we use experiments and simulations to test the effect of PCA processing on data obtained from AuAg alloy NPs a few nanometers wide with different compositions. This study aims to address the reliability of chemical quantification after PCA processing. Our results show that the PCA treatment mitigates the contribution of Poisson noise and leads to better quantification, indicating that denoised results may be reliable from the point of view of both uncertainty and accuracy for properly planned experiments. However, the initial data need to be of sufficient quality: these results can only be obtained if the signal-to-noise ratio of input data exceeds a minimal value to avoid the occurrence of random noise bias in the PCA reconstructions.

6.
NPJ Biofilms Microbiomes ; 7(1): 86, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876576

RESUMO

The morphological plasticity of bacteria to form filamentous cells commonly represents an adaptive strategy induced by stresses. In contrast, for diverse human and plant pathogens, filamentous cells have been recently observed during biofilm formation, but their functions and triggering mechanisms remain unclear. To experimentally identify the underlying function and hypothesized cell communication triggers of such cell morphogenesis, spatially controlled cell patterning is pivotal. Here, we demonstrate highly selective cell adhesion of the biofilm-forming phytopathogen Xylella fastidiosa to gold-patterned SiO2 substrates with well-defined geometries and dimensions. The consequent control of both cell density and distances between cell clusters demonstrated that filamentous cell formation depends on cell cluster density, and their ability to interconnect neighboring cell clusters is distance-dependent. This process allows the creation of large interconnected cell clusters that form the structural framework for macroscale biofilms. The addition of diffusible signaling molecules from supernatant extracts provides evidence that cell filamentation is induced by quorum sensing. These findings and our innovative platform could facilitate therapeutic developments targeting biofilm formation mechanisms of X. fastidiosa and other pathogens.


Assuntos
Dióxido de Silício , Xylella , Biofilmes , Humanos , Percepção de Quorum
7.
ACS Appl Nano Mater ; 4(8): 8334-8342, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34485844

RESUMO

Graphene oxide (GO) has immense potential for widespread use in diverse in vitro and in vivo biomedical applications owing to its thermal and chemical resistance, excellent electrical properties and solubility, and high surface-to-volume ratio. However, development of GO-based biological nanocomposites and biosensors has been hampered by its poor intrinsic biocompatibility and difficult covalent biofunctionalization across its lattice. Many studies exploit the strategy of chemically modifying GO by noncovalent and reversible attachment of (bio)molecules or sole covalent biofunctionalization of residual moieties at the lattice edges, resulting in a low coating coverage and a largely bioincompatible composite. Here, we address these problems and present a facile yet powerful method for the covalent biofunctionalization of GO using colamine (CA) and the poly(ethylene glycol) cross-linker that results in a vast improvement in the biomolecular coating density and heterogeneity across the entire GO lattice. We further demonstrate that our biofunctionalized GO with CA as the cross-linker provides superior nonspecific biomolecule adhesion suppression with increased biomarker detection sensitivity in a DNA-biosensing assay compared to the (3-aminopropyl)triethoxysilane cross-linker. Our optimized biofunctionalization method will aid the development of GO-based in situ applications including biosensors, tissue nanocomposites, and drug carriers.

8.
Biophys J ; 120(8): 1443-1453, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33607085

RESUMO

Microchannels can be used to simulate xylem vessels and investigate phytopathogen colonization under controlled conditions. In this work, we explore surface functionalization strategies for polydimethylsiloxane and glass microchannels to study microenvironment colonization by Xylella fastidiosa subsp. pauca cells. We closely monitored cell initial adhesion, growth, and motility inside microfluidic channels as a function of chemical environments that mimic those found in xylem vessels. Carboxymethylcellulose (CMC), a synthetic cellulose, and an adhesin that is overexpressed during early stages of X. fastidiosa biofilm formation, XadA1 protein, were immobilized on the device's internal surfaces. This latter protocol increased bacterial density as compared with CMC. We quantitatively evaluated the different X. fastidiosa attachment affinities to each type of microchannel surface using a mathematical model and experimental observations acquired under constant flow of culture medium. We thus estimate that bacterial cells present ∼4 and 82% better adhesion rates in CMC- and XadA1-functionalized channels, respectively. Furthermore, variable flow experiments show that bacterial adhesion forces against shear stresses approximately doubled in value for the XadA1-functionalized microchannel as compared with the polydimethylsiloxane and glass pristine channels. These results show the viability of functionalized microchannels to mimic xylem vessels and corroborate the important role of chemical environments, and particularly XadA1 adhesin, for early stages of X. fastidiosa biofilm formation, as well as adhesivity modulation along the pathogen life cycle.


Assuntos
Biofilmes , Xylella , Aderência Bacteriana , Adesão Celular , Xilema
9.
Sci Rep ; 10(1): 11590, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32641770

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

10.
Sci Rep ; 10(1): 7904, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32404930

RESUMO

Definitive evidence for the direct band gap predicted for Wurtzite Gallium Phosphide (WZ GaP) nanowires has remained elusive due to the lack of strong band-to-band luminescence in these materials. In order to circumvent this problem, we successfully obtained large volume WZ GaP structures grown by nanoparticle-crawling assisted Vapor-Liquid-Solid method. With these structures, we were able to observe bound exciton recombination at 2.14 eV with FHWM of approximately 1 meV. In addition, we have measured the optical absorption edges using photoluminescence excitation spectroscopy. Our results show a 10 K band gap at 2.19 eV and indicate a weak oscillator strength for the lowest energy band-to-band absorption edge, which is a characteristic feature of a pseudo-direct band gap semiconductor. Furthermore, the valence band splitting energies are estimated as 110 meV and 30 meV for the three highest bands. Electronic band structure calculations using the HSE06 hybrid density functional agree qualitatively with the valence band splitting energies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA