Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(6): 2229-2246, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38265152

RESUMO

PURPOSE: Dynamic (2D) MRS is a collection of techniques where acquisitions of spectra are repeated under varying experimental or physiological conditions. Dynamic MRS comprises a rich set of contrasts, including diffusion-weighted, relaxation-weighted, functional, edited, or hyperpolarized spectroscopy, leading to quantitative insights into multiple physiological or microstructural processes. Conventional approaches to dynamic MRS analysis ignore the shared information between spectra, and instead proceed by independently fitting noisy individual spectra before modeling temporal changes in the parameters. Here, we propose a universal dynamic MRS toolbox which allows simultaneous fitting of dynamic spectra of arbitrary type. METHODS: A simple user-interface allows information to be shared and precisely modeled across spectra to make inferences on both spectral and dynamic processes. We demonstrate and thoroughly evaluate our approach in three types of dynamic MRS techniques. Simulations of functional and edited MRS are used to demonstrate the advantages of dynamic fitting. RESULTS: Analysis of synthetic functional 1H-MRS data shows a marked decrease in parameter uncertainty as predicted by prior work. Analysis with our tool replicates the results of two previously published studies using the original in vivo functional and diffusion-weighted data. Finally, joint spectral fitting with diffusion orientation models is demonstrated in synthetic data. CONCLUSION: A toolbox for generalized and universal fitting of dynamic, interrelated MR spectra has been released and validated. The toolbox is shared as a fully open-source software with comprehensive documentation, example data, and tutorials.


Assuntos
Meios de Contraste , Software , Espectroscopia de Ressonância Magnética/métodos , Difusão , Incerteza
2.
Nat Commun ; 14(1): 4320, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468455

RESUMO

Understanding brain structure and function often requires combining data across different modalities and scales to link microscale cellular structures to macroscale features of whole brain organisation. Here we introduce the BigMac dataset, a resource combining in vivo MRI, extensive postmortem MRI and multi-contrast microscopy for multimodal characterisation of a single whole macaque brain. The data spans modalities (MRI and microscopy), tissue states (in vivo and postmortem), and four orders of spatial magnitude, from microscopy images with micrometre or sub-micrometre resolution, to MRI signals on the order of millimetres. Crucially, the MRI and microscopy images are carefully co-registered together to facilitate quantitative multimodal analyses. Here we detail the acquisition, curation, and first release of the data, that together make BigMac a unique, openly-disseminated resource available to researchers worldwide. Further, we demonstrate example analyses and opportunities afforded by the data, including improvement of connectivity estimates from ultra-high angular resolution diffusion MRI, neuroanatomical insight provided by polarised light imaging and myelin-stained histology, and the joint analysis of MRI and microscopy data for reconstruction of the microscopy-inspired connectome. All data and code are made openly available.


Assuntos
Conectoma , Macaca , Animais , Encéfalo/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética , Autopsia , Conectoma/métodos
3.
Neuroimage ; 262: 119535, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-35931306

RESUMO

To estimate microstructure-related parameters from diffusion MRI data, biophysical models make strong, simplifying assumptions about the underlying tissue. The extent to which many of these assumptions are valid remains an open research question. This study was inspired by the disparity between the estimated intra-axonal axial diffusivity from literature and that typically assumed by the Neurite Orientation Dispersion and Density Imaging (NODDI) model (d∥=1.7µm2/ms). We first demonstrate how changing the assumed axial diffusivity results in considerably different NODDI parameter estimates. Second, we illustrate the ability to estimate axial diffusivity as a free parameter of the model using high b-value data and an adapted NODDI framework. Using both simulated and in vivo data we investigate the impact of fitting to either real-valued or magnitude data, with Gaussian and Rician noise characteristics respectively, and what happens if we get the noise assumptions wrong in this high b-value and thus low SNR regime. Our results from real-valued human data estimate intra-axonal axial diffusivities of ∼2-2.5µm2/ms, in line with current literature. Crucially, our results demonstrate the importance of accounting for both a rectified noise floor and/or a signal offset to avoid biased parameter estimates when dealing with low SNR data.


Assuntos
Neuritos , Substância Branca , Axônios , Encéfalo , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Humanos
4.
Neuroimage ; 260: 119452, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35803473

RESUMO

Biophysical models that attempt to infer real-world quantities from data usually have many free parameters. This over-parameterisation can result in degeneracies in model inversion and render parameter estimation ill-posed. However, in many applications, we are not interested in quantifying the parameters per se, but rather in identifying changes in parameters between experimental conditions (e.g. patients vs controls). Here we present a Bayesian framework to make inference on changes in the parameters of biophysical models even when model inversion is degenerate, which we refer to as Bayesian EstimatioN of CHange (BENCH). We infer the parameter changes in two steps; First, we train models that can estimate the pattern of change in the measurements given any hypothetical direction of change in the parameters using simulations. Next, for any pair of real data sets, we use these pre-trained models to estimate the probability that an observed difference in the data can be explained by each model of change. BENCH is applicable to any type of data and models and particularly useful for biophysical models with parameter degeneracies, where we can assume the change is sparse. In this paper, we apply the approach in the context of microstructural modelling of diffusion MRI data, where the models are usually over-parameterised and not invertible without injecting strong assumptions. Using simulations, we show that in the context of the standard model of white matter our approach is able to identify changes in microstructural parameters from conventional multi-shell diffusion MRI data. We also apply our approach to a subset of subjects from the UK-Biobank Imaging to identify the dominant standard model parameter change in areas of white matter hyperintensities under the assumption that the standard model holds in white matter hyperintensities.


Assuntos
Imagem de Difusão por Ressonância Magnética , Substância Branca , Teorema de Bayes , Imagem de Difusão por Ressonância Magnética/métodos , Humanos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
5.
Nat Commun ; 13(1): 4253, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35869067

RESUMO

Myelination has been increasingly implicated in the function and dysfunction of the adult human brain. Although it is known that axon myelination shapes axon physiology in animal models, it is unclear whether a similar principle applies in the living human brain, and at the level of whole axon bundles in white matter tracts. Here, we hypothesised that in humans, cortico-cortical interactions between two brain areas may be shaped by the amount of myelin in the white matter tract connecting them. As a test bed for this hypothesis, we use a well-defined interhemispheric premotor-to-motor circuit. We combined TMS-derived physiological measures of cortico-cortical interactions during action reprogramming with multimodal myelin markers (MT, R1, R2* and FA), in a large cohort of healthy subjects. We found that physiological metrics of premotor-to-motor interaction are broadly associated with multiple myelin markers, suggesting interindividual differences in tract myelination may play a role in motor network physiology. Moreover, we also demonstrate that myelination metrics link indirectly to action switching by influencing local primary motor cortex dynamics. These findings suggest that myelination levels in white matter tracts may influence millisecond-level cortico-cortical interactions during tasks. They also unveil a link between the physiology of the motor network and the myelination of tracts connecting its components, and provide a putative mechanism mediating the relationship between brain myelination and human behaviour.


Assuntos
Substância Branca , Adulto , Animais , Axônios , Encéfalo , Mapeamento Encefálico , Humanos , Bainha de Mielina
6.
Cell Rep ; 39(11): 110951, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705046

RESUMO

Synaptic plasticity is required for learning and follows Hebb's rule, the computational principle underpinning associative learning. In recent years, a complementary type of brain plasticity has been identified in myelinated axons, which make up the majority of brain's white matter. Like synaptic plasticity, myelin plasticity is required for learning, but it is unclear whether it is Hebbian or whether it follows different rules. Here, we provide evidence that white matter plasticity operates following Hebb's rule in humans. Across two experiments, we find that co-stimulating cortical areas to induce Hebbian plasticity leads to relative increases in cortical excitability and associated increases in a myelin marker within the stimulated fiber bundle. We conclude that Hebbian plasticity extends beyond synaptic changes and can be observed in human white matter fibers.


Assuntos
Substância Branca , Humanos , Aprendizagem , Plasticidade Neuronal
7.
Cortex ; 145: 187-200, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34742100

RESUMO

Several studies have established specific relationships between White Matter (WM) and behaviour. However, these studies have typically focussed on fractional anisotropy (FA), a neuroimaging metric that is sensitive to multiple tissue properties, making it difficult to identify what biological aspects of WM may drive such relationships. Here, we carry out a pre-registered assessment of WM-behaviour relationships in 50 healthy individuals across multiple behavioural and anatomical domains, and complementing FA with myelin-sensitive quantitative MR modalities (MT, R1, R2∗). Surprisingly, we only find support for predicted relationships between FA and behaviour in one of three pre-registered tests. For one behavioural domain, where we failed to detect an FA-behaviour correlation, we instead find evidence for a correlation between behaviour and R1. This hints that multimodal approaches are able to identify a wider range of WM-behaviour relationships than focusing on FA alone. To test whether a common biological substrate such as myelin underlies WM-behaviour relationships, we then ran joint multimodal analyses, combining across all MRI parameters considered. No significant multimodal signatures were found and power analyses suggested that sample sizes of 40-200 may be required to detect such joint multimodal effects, depending on the task being considered. These results demonstrate that FA-behaviour relationships from the literature can be replicated, but may not be easily generalisable across domains. Instead, multimodal microstructural imaging may be best placed to detect a wider range of WM-behaviour relationships, as different MRI modalities provide distinct biological sensitivities. Our findings highlight a broad heterogeneity in WM's relationship with behaviour, suggesting that variable biological effects may be shaping their interaction.


Assuntos
Substância Branca , Anisotropia , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Humanos , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem
8.
Magn Reson Med ; 86(5): 2618-2634, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34254349

RESUMO

PURPOSE: Myelin has long been the target of neuroimaging research. However, most available techniques can only provide a voxel-averaged estimate of myelin content. In the human brain, white matter fiber pathways connecting different brain areas and carrying different functions often cross each other in the same voxel. A measure that can differentiate the degree of myelination of crossing fibers would provide a more specific marker of myelination. THEORY AND METHODS: One MRI signal property that is sensitive to myelin is the phase accumulation. This sensitivity is used by measuring the phase accumulation of the signal remaining after diffusion-weighting, which is called diffusion-prepared phase imaging (DIPPI). Including diffusion-weighting before estimating the phase accumulation has two distinct advantages for estimating the degree of myelination: (1) It increases the relative contribution of intra-axonal water, whose phase is related linearly to the thickness of the surrounding myelin (in particular the log g-ratio); and (2) it gives directional information, which can be used to distinguish between crossing fibers. Here the DIPPI sequence is described, an approach is proposed to estimate the log g-ratio, and simulations are used and DIPPI data acquired in an isotropic phantom to quantify other sources of phase accumulation. RESULTS: The expected bias is estimated in the log g-ratio for reasonable in vivo acquisition parameters caused by eddy currents (~4%-10%), remaining extra-axonal signal (~15%), and gradients in the bulk off-resonance field (<10% for most of the brain). CONCLUSION: This new sequence may provide a g-ratio estimate per fiber population crossing within a voxel.


Assuntos
Bainha de Mielina , Substância Branca , Axônios , Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Humanos , Substância Branca/diagnóstico por imagem
9.
J Neurosci ; 41(5): 1092-1104, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33436528

RESUMO

The World Health Organization promotes physical exercise and a healthy lifestyle as means to improve youth development. However, relationships between physical lifestyle and human brain development are not fully understood. Here, we asked whether a human brain-physical latent mode of covariation underpins the relationship between physical activity, fitness, and physical health measures with multimodal neuroimaging markers. In 50 12-year old school pupils (26 females), we acquired multimodal whole-brain MRI, characterizing brain structure, microstructure, function, myelin content, and blood perfusion. We also acquired physical variables measuring objective fitness levels, 7 d physical activity, body mass index, heart rate, and blood pressure. Using canonical correlation analysis, we unravel a latent mode of brain-physical covariation, independent of demographics, school, or socioeconomic status. We show that MRI metrics with greater involvement in this mode also showed spatially extended patterns across the brain. Specifically, global patterns of greater gray matter perfusion, volume, cortical surface area, greater white matter extra-neurite density, and resting state networks activity covaried positively with measures reflecting a physically active phenotype (high fit, low sedentary individuals). Showing that a physically active lifestyle is linked with systems-level brain MRI metrics, these results suggest widespread associations relating to several biological processes. These results support the notion of close brain-body relationships and underline the importance of investigating modifiable lifestyle factors not only for physical health but also for brain health early in adolescence.SIGNIFICANCE STATEMENT An active lifestyle is key for healthy development. In this work, we answer the following question: How do brain neuroimaging markers relate with young adolescents' level of physical activity, fitness, and physical health? Combining advanced whole-brain multimodal MRI metrics with computational approaches, we show a robust relationship between physically active lifestyles and spatially extended, multimodal brain imaging-derived phenotypes. Suggesting a wider effect on brain neuroimaging metrics than previously thought, this work underlies the importance of studying physical lifestyle, as well as other brain-body relationships in an effort to foster brain health at this crucial stage in development.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Exercício Físico/fisiologia , Estilo de Vida Saudável/fisiologia , Imagem Multimodal/métodos , Acelerometria/métodos , Acelerometria/tendências , Adolescente , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/tendências , Masculino , Imagem Multimodal/tendências
10.
Neuroimage ; 227: 117693, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33385545

RESUMO

Many brain imaging studies aim to measure structural connectivity with diffusion tractography. However, biases in tractography data, particularly near the boundary between white matter and cortical grey matter can limit the accuracy of such studies. When seeding from the white matter, streamlines tend to travel parallel to the convoluted cortical surface, largely avoiding sulcal fundi and terminating preferentially on gyral crowns. When seeding from the cortical grey matter, streamlines generally run near the cortical surface until reaching deep white matter. These so-called "gyral biases" limit the accuracy and effective resolution of cortical structural connectivity profiles estimated by tractography algorithms, and they do not reflect the expected distributions of axonal densities seen in invasive tracer studies or stains of myelinated fibres. We propose an algorithm that concurrently models fibre density and orientation using a divergence-free vector field within gyral blades to encourage an anatomically-justified streamline density distribution along the cortical white/grey-matter boundary while maintaining alignment with the diffusion MRI estimated fibre orientations. Using in vivo data from the Human Connectome Project, we show that this algorithm reduces tractography biases. We compare the structural connectomes to functional connectomes from resting-state fMRI, showing that our model improves cross-modal agreement. Finally, we find that after parcellation the changes in the structural connectome are very minor with slightly improved interhemispheric connections (i.e, more homotopic connectivity) and slightly worse intrahemispheric connections when compared to tracers.


Assuntos
Algoritmos , Encéfalo/anatomia & histologia , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Substância Branca/anatomia & histologia , Imagem de Tensor de Difusão , Humanos
11.
Neuroimage ; 220: 117113, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32621975

RESUMO

Diffusion-weighted steady-state free precession (DW-SSFP) is an SNR-efficient diffusion imaging method. The improved SNR and resolution available at ultra-high field has motivated its use at 7T. However, these data tend to have severe B1 inhomogeneity, leading not only to spatially varying SNR, but also to spatially varying diffusivity estimates, confounding comparisons both between and within datasets. This study proposes the acquisition of DW-SSFP data at two-flip angles in combination with explicit modelling of non-Gaussian diffusion to address B1 inhomogeneity at 7T. Data were acquired from five fixed whole human post-mortem brains with a pair of flip angles that jointly optimize the diffusion contrast-to-noise (CNR) across the brain. We compared one- and two-flip angle DW-SSFP data using a tensor model that incorporates the full DW-SSFP Buxton signal, in addition to tractography performed over the cingulum bundle and pre-frontal cortex using a ball & sticks model. The two-flip angle DW-SSFP data produced angular uncertainty and tractography estimates close to the CNR optimal regions in the single-flip angle datasets. The two-flip angle tensor estimates were subsequently fitted using a modified DW-SSFP signal model that incorporates a gamma distribution of diffusivities. This allowed us to generate tensor maps at a single effective b-value yielding more consistent SNR across tissue, in addition to eliminating the B1 dependence on diffusion coefficients and orientation maps. Our proposed approach will allow the use of DW-SSFP at 7T to derive diffusivity estimates that have greater interpretability, both within a single dataset and between experiments.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos
12.
Neuroimage ; 215: 116832, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32283273

RESUMO

Measuring fibre dispersion in white matter with diffusion magnetic resonance imaging (MRI) is limited by an inherent degeneracy between fibre dispersion and microscopic diffusion anisotropy (i.e., the diffusion anisotropy expected for a single fibre orientation). This means that estimates of fibre dispersion rely on strong assumptions, such as constant microscopic anisotropy throughout the white matter or specific biophysical models. Here we present a simple approach for resolving this degeneracy using measurements that combine linear (conventional) and spherical tensor diffusion encoding. To test the accuracy of the fibre dispersion when our microstructural model is only an approximation of the true tissue structure, we simulate multi-compartment data and fit this with a single-compartment model. For such overly simplistic tissue assumptions, we show that the bias in fibre dispersion is greatly reduced (~5x) for single-shell linear and spherical tensor encoding data compared with single-shell or multi-shell conventional data. In in-vivo data we find a consistent estimate of fibre dispersion as we reduce the b-value from 3 to 1.5 ms/µm2, increase the repetition time, increase the echo time, or increase the diffusion time. We conclude that the addition of spherical tensor encoded data to conventional linear tensor encoding data greatly reduces the sensitivity of the estimated fibre dispersion to the model assumptions of the tissue microstructure.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Modelos Neurológicos , Fibras Nervosas Mielinizadas , Substância Branca/diagnóstico por imagem , Encéfalo/fisiologia , Humanos , Fibras Nervosas Mielinizadas/fisiologia , Substância Branca/fisiologia
13.
Magn Reson Med ; 84(2): 873-884, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31922283

RESUMO

PURPOSE: Diffusion-weighted steady-state free precession (DW-SSFP) is shown to provide a means to probe non-Gaussian diffusion through manipulation of the flip angle. A framework is presented to define an effective b-value in DW-SSFP. THEORY: The DW-SSFP signal is a summation of coherence pathways with different b-values. The relative contribution of each pathway is dictated by the flip angle. This leads to an apparent diffusion coefficient (ADC) estimate that depends on the flip angle in non-Gaussian diffusion regimes. By acquiring DW-SSFP data at multiple flip angles and modeling the variation in ADC for a given form of non-Gaussianity, the ADC can be estimated at a well-defined effective b-value. METHODS: A gamma distribution is used to model non-Gaussian diffusion, embedded in the Buxton signal model for DW-SSFP. Monte-Carlo simulations of non-Gaussian diffusion in DW-SSFP and diffusion-weighted spin-echo sequences are used to verify the proposed framework. Dependence of ADC on flip angle in DW-SSFP is verified with experimental measurements in a whole, human postmortem brain. RESULTS: Monte-Carlo simulations reveal excellent agreement between ADCs estimated with diffusion-weighted spin-echo and the proposed framework. Experimental ADC estimates vary as a function of flip angle over the corpus callosum of the postmortem brain, estimating the mean and standard deviation of the gamma distribution as 1.50·10-4  mm2 /s and 2.10·10-4  mm2 /s. CONCLUSION: DW-SSFP can be used to investigate non-Gaussian diffusion by varying the flip angle. By fitting a model of non-Gaussian diffusion, the ADC in DW-SSFP can be estimated at an effective b-value, comparable to more conventional diffusion sequences.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Autopsia , Encéfalo/diagnóstico por imagem , Corpo Caloso , Difusão , Humanos
14.
Neuroimage ; 201: 116014, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31315062

RESUMO

The combination of diffusion MRI (dMRI) with microscopy provides unique opportunities to study microstructural features of tissue, particularly when acquired in the same sample. Microscopy is frequently used to validate dMRI microstructure models, addressing the indirect nature of dMRI signals. Typically, these modalities are analysed separately, and microscopy is taken as a gold standard against which dMRI-derived parameters are validated. Here we propose an alternative approach in which we combine dMRI and microscopy data obtained from the same tissue sample to drive a single, joint model. This simultaneous analysis allows us to take advantage of the breadth of information provided by complementary data acquired from different modalities. By applying this framework to a spherical-deconvolution analysis, we are able to overcome a known degeneracy between fibre dispersion and radial diffusion. Spherical-deconvolution based approaches typically estimate a global fibre response function to determine the fibre orientation distribution in each voxel. However, the assumption of a 'brain-wide' fibre response function may be challenged if the diffusion characteristics of white matter vary across the brain. Using a generative joint dMRI-histology model, we demonstrate that the fibre response function is dependent on local anatomy, and that current spherical-deconvolution based models may be overestimating dispersion and underestimating the number of distinct fibre populations per voxel.


Assuntos
Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Microscopia , Humanos
15.
Elife ; 82019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31215864

RESUMO

We investigated afferent inputs from all areas in the frontal cortex (FC) to different subregions in the rostral anterior cingulate cortex (rACC). Using retrograde tracing in macaque monkeys, we quantified projection strength by counting retrogradely labeled cells in each FC area. The projection from different FC regions varied across injection sites in strength, following different spatial patterns. Importantly, a site at the rostral end of the cingulate sulcus stood out as having strong inputs from many areas in diverse FC regions. Moreover, it was at the integrative conjunction of three projection trends across sites. This site marks a connectional hub inside the rACC that integrates FC inputs across functional modalities. Tractography with monkey diffusion magnetic resonance imaging (dMRI) located a similar hub region comparable to the tracing result. Applying the same tractography method to human dMRI data, we demonstrated that a similar hub can be located in the human rACC.


Assuntos
Cognição/fisiologia , Emoções/fisiologia , Lobo Frontal/fisiologia , Giro do Cíngulo/fisiologia , Animais , Mapeamento Encefálico/métodos , Imagem de Difusão por Ressonância Magnética , Lobo Frontal/diagnóstico por imagem , Giro do Cíngulo/diagnóstico por imagem , Humanos , Macaca/fisiologia , Macaca/psicologia , Vias Neurais/fisiologia
16.
Neuroimage ; 184: 801-812, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30267859

RESUMO

Diffusion MRI data can be affected by hardware and subject-related artefacts that can adversely affect downstream analyses. Therefore, automated quality control (QC) is of great importance, especially in large population studies where visual QC is not practical. In this work, we introduce an automated diffusion MRI QC framework for single subject and group studies. The QC is based on a comprehensive, non-parametric approach for movement and distortion correction: FSL EDDY, which allows us to extract a rich set of QC metrics that are both sensitive and specific to different types of artefacts. Two different tools are presented: QUAD (QUality Assessment for DMRI), for single subject QC and SQUAD (Study-wise QUality Assessment for DMRI), which is designed to enable group QC and facilitate cross-studies harmonisation efforts.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Artefatos , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Controle de Qualidade , Reprodutibilidade dos Testes , Razão Sinal-Ruído
17.
Neuroimage ; 176: 417-430, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29684644

RESUMO

When axonal fibres approach or leave the cortex, their trajectories tend to closely follow the cortical convolutions. To quantify this tendency, we propose a three-dimensional coordinate system based on the gyral geometry. For every voxel in the brain, we define a "radial" axis orthogonal to nearby surfaces, a "sulcal" axis along the sulcal depth gradient that preferentially points from deep white matter to the gyral crown, and a "gyral" axis aligned with the long axis of the gyrus. When compared with high-resolution, in-vivo diffusion MRI data from the Human Connectome Project, we find that in superficial white matter the apparent diffusion coefficient (at b = 1000) along the sulcal axis is on average 16% larger than along the gyral axis and twice as large as along the radial axis. This is reflected in the vast majority of observed fibre orientations lying close to the tangential plane (median angular offset < 7°), with the dominant fibre orientation typically aligning with the sulcal axis. In cortical grey matter, fibre orientations transition to a predominantly radial orientation. We quantify the width and location of this transition and find strong reproducibility in test-retest data, but also a clear dependence on the resolution of the diffusion data. The ratio of radial to tangential diffusion is fairly constant throughout most of the cortex, except for a decrease of the diffusivitiy ratio in the sulcal fundi and the primary somatosensory cortex (Brodmann area 3) and an increase in the primary motor cortex (Brodmann area 4). Although only constrained by cortical folds, the proposed gyral coordinate system provides a simple and intuitive representation of white and grey matter fibre orientations near the cortex, and may be useful for future studies of white matter development and organisation.


Assuntos
Axônios , Córtex Cerebral/anatomia & histologia , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Substância Branca/anatomia & histologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Conectoma , Humanos , Córtex Motor/anatomia & histologia , Córtex Motor/diagnóstico por imagem , Análise de Componente Principal , Córtex Somatossensorial/anatomia & histologia , Córtex Somatossensorial/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
18.
Neuroimage ; 173: 540-550, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476911

RESUMO

Functional connectivity (FC) analyses of correlations of neural activity are used extensively in neuroimaging and electrophysiology to gain insights into neural interactions. However, analyses assessing changes in correlation fail to distinguish effects produced by sources as different as changes in neural signal amplitudes or noise levels. This ambiguity substantially diminishes the value of FC for inferring system properties and clinical states. Network modelling approaches may avoid ambiguities, but require specific assumptions. We present an enhancement to FC analysis with improved specificity of inferences, minimal assumptions and no reduction in flexibility. The Additive Signal Change (ASC) approach characterizes FC changes into certain prevalent classes of signal change that involve the input of additional signal to existing activity. With FMRI data, the approach reveals a rich diversity of signal changes underlying measured changes in FC, suggesting that it could clarify our current understanding of FC changes in many contexts. The ASC method can also be used to disambiguate other measures of dependency, such as regression and coherence, providing a flexible tool for the analysis of neural data.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Mapeamento Encefálico/métodos , Humanos , Vias Neurais/fisiologia
19.
Neuroimage ; 158: 205-218, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28669902

RESUMO

Diffusion MRI allows us to make inferences on the structural organisation of the brain by mapping water diffusion to white matter microstructure. However, such a mapping is generally ill-defined; for instance, diffusion measurements are antipodally symmetric (diffusion along x and -x are equal), whereas the distribution of fibre orientations within a voxel is generally not symmetric. Therefore, different sub-voxel patterns such as crossing, fanning, or sharp bending, cannot be distinguished by fitting a voxel-wise model to the signal. However, asymmetric fibre patterns can potentially be distinguished once spatial information from neighbouring voxels is taken into account. We propose a neighbourhood-constrained spherical deconvolution approach that is capable of inferring asymmetric fibre orientation distributions (A-fods). Importantly, we further design and implement a tractography algorithm that utilises the estimated A-fods, since the commonly used streamline tractography paradigm cannot directly take advantage of the new information. We assess performance using ultra-high resolution histology data where we can compare true orientation distributions against sub-voxel fibre patterns estimated from down-sampled data. Finally, we explore the benefits of A-fods-based tractography using in vivo data by evaluating agreement of tractography predictions with connectivity estimates made using different in-vivo modalities. The proposed approach can reliably estimate complex fibre patterns such as sharp bending and fanning, which voxel-wise approaches cannot estimate. Moreover, histology-based and in-vivo results show that the new framework allows more accurate tractography and reconstruction of maps quantifying (symmetric and asymmetric) fibre complexity.


Assuntos
Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Processamento de Imagem Assistida por Computador/métodos , Fibras Nervosas , Algoritmos , Animais , Encéfalo/anatomia & histologia , Humanos , Macaca , Modelos Neurológicos , Reconhecimento Automatizado de Padrão/métodos
20.
Neuroimage ; 157: 561-574, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28602815

RESUMO

Diffusion MRI is an exquisitely sensitive probe of tissue microstructure, and is currently the only non-invasive measure of the brain's fibre architecture. As this technique becomes more sophisticated and microstructurally informative, there is increasing value in comparing diffusion MRI with microscopic imaging in the same tissue samples. This study compared estimates of fibre orientation dispersion in white matter derived from diffusion MRI to reference measures of dispersion obtained from polarized light imaging and histology. Three post-mortem brain specimens were scanned with diffusion MRI and analyzed with a two-compartment dispersion model. The specimens were then sectioned for microscopy, including polarized light imaging estimates of fibre orientation and histological quantitative estimates of myelin and astrocytes. Dispersion estimates were correlated on region - and voxel-wise levels in the corpus callosum, the centrum semiovale and the corticospinal tract. The region-wise analysis yielded correlation coefficients of r = 0.79 for the diffusion MRI and histology comparison, while r = 0.60 was reported for the comparison with polarized light imaging. In the corpus callosum, we observed a pattern of higher dispersion at the midline compared to its lateral aspects. This pattern was present in all modalities and the dispersion profiles from microscopy and diffusion MRI were highly correlated. The astrocytes appeared to have minor contribution to dispersion observed with diffusion MRI. These results demonstrate that fibre orientation dispersion estimates from diffusion MRI represents the tissue architecture well. Dispersion models might be improved by more faithfully incorporating an informed mapping based on microscopy data.


Assuntos
Astrócitos , Imagem de Difusão por Ressonância Magnética/métodos , Técnicas Histológicas/métodos , Microscopia/métodos , Bainha de Mielina , Bancos de Tecidos , Substância Branca/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Imagem de Difusão por Ressonância Magnética/normas , Técnicas Histológicas/normas , Humanos , Masculino , Microscopia/normas , Microscopia de Polarização/métodos , Microscopia de Polarização/normas , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...