Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39131378

RESUMO

Age is a major predictor of developmental processes and disease risk, but humans and model systems (e.g., mice) differ substantially in the pace of development and aging. The timeline of human developmental circuits is well known. It is unclear how such timelines compare to those in mice. We lack age alignments across the lifespan of mice and humans. Here, we build upon our Translating Time resource, which is a tool that equates corresponding ages during development. We collected 477 time points (n=1,132 observations) from age-related changes in body, bone, dental, and brain processes to equate corresponding ages across humans and mice. We acquired high-resolution diffusion MR scans of mouse brains (n=12) at sequential stages of postnatal development (postnatal day 3, 4, 12, 21, 60) to trace the timeline of brain circuit maturation (e.g., olfactory association pathway, corpus callosum). We found heterogeneity in white matter pathway growth. The corpus callosum largely ceases to grow days after birth while the olfactory association pathway grows through P60. We found that a P3 mouse equates to a human at roughly GW24, and a P60 mouse equates to a human in teenage years. Therefore, white matter pathway maturation is extended in mice as it is in humans, but there are species-specific adaptations. For example, olfactory-related wiring is protracted in mice, which is linked to their reliance on olfaction. Our findings underscore the importance of translational tools to map common and species-specific biological processes from model systems to humans.

2.
Neuromuscul Disord ; 37: 13-22, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38493520

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive disease that affects 1 out of every 6,000-10,000 individuals at birth, making it the leading genetic cause of infant mortality. In recent years, reports of sex differences in SMA patients have become noticeable. The SMNΔ7 mouse model is commonly used to investigate pathologies and treatments in SMA. However, studies on sex as a contributing biological variable are few and dated. Here, we rigorously investigated the effect of sex on a series of characteristics in SMA mice of the SMNΔ7 model. Incidence and lifespan of 23 mouse litters were tracked and phenotypic assessments were performed at 2-day intervals starting at postnatal day 6 for every pup until the death of the SMA pup(s) in each litter. Brain weights were also collected post-mortem. We found that male and female SMA incidence does not differ significantly, survival periods are the same across sexes, and there was no phenotypic difference between male and female SMA pups, other than for females exhibiting lesser body weights at early ages. Overall, this study ensures that sex is not a biological variable that contributes to the incidence ratio or disease severity in the SMNΔ7 mouse model.


Assuntos
Atrofia Muscular Espinal , Caracteres Sexuais , Camundongos , Humanos , Animais , Feminino , Masculino , Incidência , Atrofia Muscular Espinal/epidemiologia , Atrofia Muscular Espinal/genética , Fenótipo , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/genética
3.
Brain Pathol ; 33(5): e13162, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37218083

RESUMO

Spinalmuscular atrophy (SMA) is a neuromuscular disease that affects as many as 1 in 6000 individuals at birth, making it the leading genetic cause of infant mortality. A growing number of studies indicate that SMA is a multi-system disease. The cerebellum has received little attention even though it plays an important role in motor function and widespread pathology has been reported in the cerebella of SMA patients. In this study, we assessed SMA pathology in the cerebellum using structural and diffusion magnetic resonance imaging, immunohistochemistry, and electrophysiology with the SMNΔ7 mouse model. We found a significant disproportionate loss in cerebellar volume, decrease in afferent cerebellar tracts, selective lobule-specific degeneration of Purkinje cells, abnormal lobule foliation and astrocyte integrity, and a decrease in spontaneous firing of cerebellar output neurons in the SMA mice compared to controls. Our data suggest that defects in cerebellar structure and function due to decreased survival motor neuron (SMN) levels impair the functional cerebellar output affecting motor control, and that cerebellar pathology should be addressed to achieve comprehensive treatment and therapy for SMA patients.


Assuntos
Astrócitos , Atrofia Muscular Espinal , Camundongos , Animais , Astrócitos/patologia , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patologia , Neurônios Motores/patologia , Cerebelo/patologia , Modelos Animais de Doenças , Proteína 1 de Sobrevivência do Neurônio Motor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA