Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neural Circuits ; 14: 528993, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192334

RESUMO

Besides the main cortical inputs to the basal ganglia, via the corticostriatal projection, there is another input via the corticosubthalamic projection (CSTP), terminating in the subthalamic nucleus (STN). The present study investigated and compared the CSTPs originating from the premotor cortex (PM) or the primary motor cortex (M1) in two groups of adult macaque monkeys. The first group includes six intact monkeys, whereas the second group was made up of four monkeys subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication producing Parkinson's disease (PD)-like symptoms and subsequently treated with an autologous neural cell ecosystem (ANCE) therapy. The CSTPs were labeled with the anterograde tracer biotinylated dextran amine (BDA), injected either in PM or in M1. BDA-labeled axonal terminal boutons in STN were charted, counted, and then normalized based on the number of labeled corticospinal axons in each monkey. In intact monkeys, the CSTP from PM was denser than that originating from M1. In two PD monkeys, the CSTP originating from PM or M1 were substantially increased, as compared to intact monkeys. In one other PD monkey, there was no obvious change, whereas the last PD monkey showed a decrease of the CSTP originating from M1. Interestingly, the linear relationship between CSTP density and PD symptoms yielded a possible dependence of the CSTP re-organization with the severity of the MPTP lesion. The higher the PD symptoms, the larger the CSTP densities, irrespective of the origin (from both M1 or PM). Plasticity of the CSTP in PD monkeys may be related to PD itself and/or to the ANCE treatment.


Assuntos
Córtex Motor/metabolismo , Transtornos Parkinsonianos/metabolismo , Núcleo Subtalâmico/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Macaca fascicularis , Córtex Motor/citologia , Córtex Motor/patologia , Vias Neurais/citologia , Vias Neurais/metabolismo , Vias Neurais/patologia , Técnicas de Rastreamento Neuroanatômico , Transtornos Parkinsonianos/patologia , Projetos Piloto , Núcleo Subtalâmico/citologia , Núcleo Subtalâmico/patologia
2.
Neurorehabil Neural Repair ; 33(7): 553-567, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31170868

RESUMO

Background. Autologous neural cell ecosystem (ANCE) transplantation improves motor recovery in MPTP monkeys. These motor symptoms were assessed using semi-quantitative clinical rating scales, widely used in many studies. However, limitations in terms of sensitivity, combined with relatively subjective assessment of their different items, make inter-study comparisons difficult to achieve. Objective. The aim of this study was to quantify the impact of MPTP intoxication in macaque monkeys on manual dexterity and assess whether ANCE can contribute to functional recovery. Methods. Four animals were trained to perform 2 manual dexterity tasks. After reaching a motor performance plateau, the animals were subjected to an MPTP lesion. After the occurrence of a spontaneous functional recovery plateau, all 4 animals were subjected to ANCE transplantation. Results. Two of 4 animals underwent a full spontaneous recovery before the ANCE transplantation, whereas the 2 other animals (symptomatic) presented moderate to severe Parkinson's disease (PD)-like symptoms affecting manual dexterity. The time to grasp small objects using the precision grip increased in these 2 animals. After ANCE transplantation, the 2 symptomatic animals underwent a significant functional recovery, reflected by a decrease in time to execute the different tasks, as compared with the post-lesion phase. Conclusions. Manual dexterity is affected in symptomatic MPTP monkeys. The 2 manual dexterity tasks reported here as pilot are pertinent to quantify PD symptoms and reliably assess a treatment in MPTP monkeys, such as the present ANCE transplantation, to be confirmed in a larger cohort of animals before future clinical applications.


Assuntos
Comportamento Animal/fisiologia , Transplante de Células , Intoxicação por MPTP/fisiopatologia , Intoxicação por MPTP/terapia , Neostriado/fisiopatologia , Recuperação de Função Fisiológica/fisiologia , Animais , Modelos Animais de Doenças , Feminino , Macaca fascicularis , Destreza Motora , Neostriado/cirurgia , Projetos Piloto , Transplante Autólogo
3.
Front Neuroanat ; 13: 50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31191260

RESUMO

The corticotectal projections, together with the corticobulbar (corticoreticular) projections, work in parallel with the corticospinal tract (CST) to influence motoneurons in the spinal cord both directly and indirectly via the brainstem descending pathways. The tectospinal tract (TST) originates in the deep layers of the superior colliculus. In the present study, we analyzed the corticotectal projections from two motor cortical areas, namely the premotor cortex (PM) and the primary motor cortex (M1) in eight macaque monkeys subjected to either a cortical lesion of the hand area in M1 (n = 4) or Parkinson's disease-like symptoms PD (n = 4). A subgroup of monkeys with cortical lesion was subjected to anti-Nogo-A antibody treatment whereas all PD monkeys were transplanted with Autologous Neural Cell Ecosystems (ANCEs). The anterograde tracer BDA was used to label the axonal boutons both en passant and terminaux in the ipsilateral superior colliculus. Individual axonal boutons were charted in the different layers of the superior colliculus. In intact animals, we previously observed that corticotectal projections were denser when originating from PM than from M1. In the present M1 lesioned monkeys, as compared to intact ones the corticotectal projection originating from PM was decreased when treated with anti-Nogo-A antibody but not in untreated monkeys. In PD-like symptoms' monkeys, on the other hand, there was no consistent change affecting the corticotectal projection as compared to intact monkeys. The present pilot study overall suggests that the corticotectal projection is less affected by M1 lesion or PD symptoms than the corticoreticular projection previously reported in the same animals.

4.
Eur J Neurosci ; 48(4): 2050-2070, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30019432

RESUMO

Functional recovery from central nervous system injury is likely to be partly due to a rearrangement of neural circuits. In this context, the corticobulbar (corticoreticular) motor projections onto different nuclei of the ponto-medullary reticular formation (PMRF) were investigated in 13 adult macaque monkeys after either, primary motor cortex injury (MCI) in the hand area, or spinal cord injury (SCI) or Parkinson's disease-like lesions of the nigro-striatal dopaminergic system (PD). A subgroup of animals in both MCI and SCI groups was treated with neurite growth promoting anti-Nogo-A antibodies, whereas all PD animals were treated with autologous neural cell ecosystems (ANCE). The anterograde tracer BDA was injected either in the premotor cortex (PM) or in the primary motor cortex (M1) to label and quantify corticobulbar axonal boutons terminaux and en passant in PMRF. As compared to intact animals, after MCI the density of corticobulbar projections from PM was strongly reduced but maintained their laterality dominance (ipsilateral), both in the presence or absence of anti-Nogo-A antibody treatment. In contrast, the density of corticobulbar projections from M1 was increased following opposite hemi-section of the cervical cord (at C7 level) and anti-Nogo-A antibody treatment, with maintenance of contralateral laterality bias. In PD monkeys, the density of corticobulbar projections from PM was strongly reduced, as well as that from M1, but to a lesser extent. In conclusion, the densities of corticobulbar projections from PM or M1 were affected in a variable manner, depending on the type of lesion/pathology and the treatment aimed to enhance functional recovery.


Assuntos
Lesões Encefálicas/patologia , Córtex Motor/lesões , Córtex Motor/patologia , Doença de Parkinson/patologia , Tratos Piramidais/patologia , Formação Reticular/patologia , Rombencéfalo/patologia , Traumatismos da Medula Espinal/patologia , Animais , Anticorpos Bloqueadores/administração & dosagem , Lesões Encefálicas/terapia , Transplante de Células , Modelos Animais de Doenças , Feminino , Mãos/patologia , Macaca fascicularis , Masculino , Técnicas de Rastreamento Neuroanatômico , Proteínas Nogo/imunologia , Doença de Parkinson/terapia , Traumatismos da Medula Espinal/terapia , Transplante Autólogo
5.
Ann Clin Transl Neurol ; 5(1): 98-101, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29376096

RESUMO

Patients with supernumerary phantom limb report experiencing an additional limb duplicating its physical counterpart, usually following a stroke with sensorimotor disturbances. Here, we report a short-lasting case of a right upper supernumerary phantom limb with unusual visuomotor features in a healthy participant during a pure Jacksonian motor seizure unexpectedly induced by continuous Theta-Burst Stimulation over the left primary motor cortex. Electromyographic correlates of the event followed the phenomenological pattern of sudden appearance and brutal dissolution of the phantom, adding credit to the hypothesis that supernumerary phantom limb results from a dynamic resolution of conflictual multimodal information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...