Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 14(1): 111, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37138298

RESUMO

BACKGROUND: The last decade has seen a significant increase in media attention, industrial growth, and patient interest in stem cell-based interventions. This led to a rise in direct-to-consumer businesses offering stem cell "therapies" for multiple indications with little evidence of safety and efficacy. In parallel, the use of stem cell secretomes as a substitute for stem cell transplantation has become an increasing trend in regenerative medicine with multiple clinical trials currently assessing their efficacy and safety profile. As a result, multiple businesses and private clinics have now started to exploit this situation and are offering secretome-based interventions despite the lack of supporting data. This poses significant risks for the patients and could lead to a credibility crisis in the field. METHODS: Internet searches were used to locate clinics marketing and selling interventions based on stem cell secretomes, exosomes, or extracellular vesicles. Data were extracted from websites with a particular focus on the global distribution of the businesses, the cellular source of the secretome, the indication spectrum, and the pricing of the provided services. Lastly, the types of evidence used on the websites of the businesses to market their services were extracted. RESULTS: Overall, 114 companies market secretome-based therapies in 28 countries. The vast majority of the interventions are based on allogenic stem cells from undisclosed cellular sources and skin care is the most marketed indication. The price range is USD99-20,000 depending on the indication. CONCLUSIONS: The direct-to-consumer industry for secretome-based therapies appears to be primed for growth in the absence of appropriate regulatory frameworks and guidelines. We conclude that such business activity requires tight regulations and monitoring by the respective national regulatory bodies to prevent patients from being conned and more importantly from being put at risk.


Assuntos
Exossomos , Vesículas Extracelulares , Humanos , Secretoma , Medicina Regenerativa , Células-Tronco
2.
Biophys Chem ; 290: 106891, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36137310

RESUMO

The COVID-19 pandemic created an unprecedented global healthcare emergency prompting the exploration of new therapeutic avenues, including drug repurposing. A large number of ongoing studies revealed pervasive issues in clinical research, such as the lack of accessible and organised data. Moreover, current shortcomings in clinical studies highlighted the need for a multi-faceted approach to tackle this health crisis. Thus, we set out to explore and develop new strategies for drug repositioning by employing computational pharmacology, data mining, systems biology, and computational chemistry to advance shared efforts in identifying key targets, affected networks, and potential pharmaceutical intervention options. Our study revealed that formulating pharmacological strategies should rely on both therapeutic targets and their networks. We showed how data mining can reveal regulatory patterns, capture novel targets, alert about side-effects, and help identify new therapeutic avenues. We also highlighted the importance of the miRNA regulatory layer and how this information could be used to monitor disease progression or devise treatment strategies. Importantly, our work bridged the interactome with the chemical compound space to better understand the complex landscape of COVID-19 drugs. Machine and deep learning allowed us to showcase limitations in current chemical libraries for COVID-19 suggesting that both in silico and experimental analyses should be combined to retrieve therapeutically valuable compounds. Based on the gathered data, we strongly advocate for taking this opportunity to establish robust practices for treating today's and future infectious diseases by preparing solid analytical frameworks.


Assuntos
Tratamento Farmacológico da COVID-19 , MicroRNAs , Humanos , Pandemias , Preparações Farmacêuticas , Bibliotecas de Moléculas Pequenas
3.
Front Physiol ; 13: 1033216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589427

RESUMO

There is strong evidence that the omega-3 polyunsaturated fatty acids (n-3 PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have cardioprotective effects. n-3 PUFAs cause vasodilation in hypertensive patients, in part controlled by increased membrane conductance to potassium. As KATP channels play a major role in vascular tone regulation and are involved in hypertension, we aimed to verify whether n-3 PUFA-mediated vasodilation involved the opening of KATP channels. We used a murine model in which the KATP channel pore subunit, Kir6.1, is deleted in vascular smooth muscle. The vasomotor response of preconstricted arteries to physiologically relevant concentrations of DHA and EPA was measured using wire myography, using the channel blocker PNU-37883A. The effect of n-3 PUFAs on potassium currents in wild-type native smooth muscle cells was investigated using whole-cell patch clamping. DHA and EPA induced vasodilation in mouse aorta and mesenteric arteries; relaxations in the aorta were sensitive to KATP blockade with PNU-37883A. Endothelium removal didn't affect relaxation to EPA and caused a small but significant inhibition of relaxation to DHA. In the knock-out model, relaxations to DHA and EPA were unaffected by channel knockdown but were still inhibited by PNU-37883A, indicating that the action of PNU-37883A on relaxation may not reflect inhibition of KATP. In native aortic smooth muscle cells DHA failed to activate KATP currents. We conclude that DHA and EPA cause vasodilation in mouse aorta and mesenteric arteries. Relaxations in blocker-treated arteries from knock-out mice demonstrate that KATP channels are not involved in the n-3 PUFA-induced relaxation.

4.
Biomolecules ; 11(10)2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34680033

RESUMO

Adipose-derived mesenchymal stromal cells (ASCs) are multipotent stem cells which can differentiate into various cell types, including osteocytes and adipocytes. Due to their ease of harvesting, multipotency, and low tumorigenicity, they are a prime candidate for the development of novel interventional approaches in regenerative medicine. ASCs exhibit slow, spontaneous Ca2+ oscillations and the manipulation of Ca2+ signalling via electrical stimulation was proposed as a potential route for promoting their differentiation in vivo. However, the effects of differentiation-inducing treatments on spontaneous Ca2+ oscillations in ASCs are not yet fully characterised. In this study, we used 2-photon live Ca2+ imaging to assess the fraction of cells showing spontaneous oscillations and the frequency of the oscillation (measured as interpeak interval-IPI) in ASCs undergoing osteogenic or adipogenic differentiation, using undifferentiated ASCs as controls. The measurements were carried out at 7, 14, and 21 days in vitro (DIV) to assess the effect of time in culture on Ca2+ dynamics. We observed that both time and differentiation treatment are important factors associated with a reduced fraction of cells showing Ca2+ oscillations, paralleled by increased IPI times, in comparison with untreated ASCs. Both adipogenic and osteogenic differentiation resulted in a reduction in Ca2+ dynamics, such as the fraction of cells showing intracellular Ca2+ oscillations and their frequency. Adipogenic differentiation was associated with a more pronounced reduction of Ca2+ dynamics compared to cells differentiating towards the osteogenic fate. Changes in Ca2+ associated oscillations with a specific treatment had already occurred at 7 DIV. Finally, we observed a reduction in Ca2+ dynamics over time in untreated ASCs. These data suggest that adipogenic and osteogenic differentiation cell fates are associated with specific changes in spontaneous Ca2+ dynamics over time. While this observation is interesting and provides useful information to understand the functional correlates of stem cell differentiation, further studies are required to clarify the molecular and mechanistic correlates of these changes. This will allow us to better understand the causal relationship between Ca2+ dynamics and differentiation, potentially leading to the development of novel, more effective interventions for both bone regeneration and control of adipose growth.


Assuntos
Adipogenia/genética , Diferenciação Celular/genética , Células-Tronco Mesenquimais/citologia , Osteogênese/genética , Adipócitos/citologia , Cálcio/metabolismo , Sinalização do Cálcio/genética , Linhagem Celular , Linhagem da Célula/genética , Humanos , Células-Tronco Mesenquimais/metabolismo , Osteócitos/citologia , Medicina Regenerativa
5.
Stem Cell Res Ther ; 12(1): 31, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413646

RESUMO

As populations age across the world, osteoporosis and osteoporosis-related fractures are becoming the most prevalent degenerative bone diseases. More than 75 million patients suffer from osteoporosis in the USA, the EU and Japan. Furthermore, it is anticipated that the number of patients affected by osteoporosis will increase by a third by 2050. Although conventional therapies including bisphosphonates, calcitonin and oestrogen-like drugs can be used to treat degenerative diseases of the bone, they are often associated with serious side effects including the development of oesophageal cancer, ocular inflammation, severe musculoskeletal pain and osteonecrosis of the jaw.The use of autologous mesenchymal stromal cells/mesenchymal stem cells (MSCs) is a possible alternative therapeutic approach to tackle osteoporosis while overcoming the limitations of traditional treatment options. However, osteoporosis can cause a decrease in the numbers of MSCs, induce their senescence and lower their osteogenic differentiation potential.Three-dimensional (3D) cell culture is an emerging technology that allows a more physiological expansion and differentiation of stem cells compared to cultivation on conventional flat systems.This review will discuss current understanding of the effects of different 3D cell culture systems on proliferation, viability and osteogenic differentiation, as well as on the immunomodulatory and anti-inflammatory potential of MSCs.


Assuntos
Células-Tronco Mesenquimais , Regeneração Óssea , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Humanos , Osteogênese
6.
Biophys Rep (N Y) ; 1(2): 100028, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36425454

RESUMO

Epigenetic research holds great promise to advance our understanding of biomarkers and regulatory processes in health and disease. An increasing number of new approaches, ranging from molecular to biophysical analyses, enable identifying epigenetic changes on the level of a single gene or the whole epigenome. The aim of this review is to highlight how the field is shifting from completely molecular-biology-driven solutions to multidisciplinary strategies including more reliance on biophysical analysis tools. Biophysics not only offers technical advancements in imaging or structure analysis but also helps to explore regulatory interactions. New computational methods are also being developed to meet the demand of growing data volumes and their processing. Therefore, it is important to capture these new directions in epigenetics from a biophysical perspective and discuss current challenges as well as multiple applications of biophysical methods and tools. Specifically, we gradually introduce different biophysical research methods by first considering the DNA-level information and eventually higher-order chromatin structures. Moreover, we aim to highlight that the incorporation of bioinformatics, machine learning, and artificial intelligence into biophysical analysis allows gaining new insights into complex epigenetic processes. The gained understanding has already proven useful in translational and clinical research providing better patient stratification options or new therapeutic insights. Together, this offers a better readiness to transform bench-top experiments into industrial high-throughput applications with a possibility to employ developed methods in clinical practice and diagnostics.

7.
Cell Calcium ; 93: 102326, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33360835

RESUMO

SUMOylation is an important post-translational modification process involving covalent attachment of SUMO (Small Ubiquitin-like MOdifier) protein to target proteins. Here, we investigated the potential for SUMO-1 protein to modulate the function of the CaV2.2 (N-type) voltage-gated calcium channel (VGCC), a protein vital for presynaptic neurotransmitter release. Co-expression of SUMO-1, but not the conjugation-deficient mutant SUMO-1ΔGG, increased heterologously-expressed CaV2.2 Ca2+ current density, an effect potentiated by the conjugating enzyme Ubc9. Expression of sentrin-specific protease (SENP)-1 or Ubc9 alone, had no effect on recombinant CaV2.2 channels. Co-expression of SUMO-1 and Ubc9 caused an increase in whole-cell maximal conductance (Gmax) and a hyperpolarizing shift in the midpoint of activation (V1/2). Mutation of all five CaV2.2 lysine residues to arginine within the five highest probability (>65 %) SUMOylation consensus motifs (SCMs) (construct CaV2.2-Δ5KR), produced a loss-of-function mutant. Mutagenesis of selected individual lysine residues identified K394, but not K951, as a key residue for SUMO-1-mediated increase in CaV2.2 Ca2+ current density. In synaptically-coupled superior cervical ganglion (SCG) neurons, SUMO-1 protein was distributed throughout the cell body, axons and dendrites and presumptive presynaptic terminals, whilst SUMO-1ΔGG protein was largely confined to the cell body, in particular, the nucleus. SUMO-1 expression caused increases in paired excitatory postsynaptic potential (EPSP) ratio at short (20-120 ms) inter-stimuli intervals in comparison to SUMO-1ΔGG, consistent with an increase in residual presynaptic Ca2+ current and an increase in release probability of synaptic vesicles. Together, these data provide evidence for CaV2.2 VGCCs as novel targets for SUMOylation pathways.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Transdução de Sinais , Sumoilação , Animais , Fenômenos Biofísicos , Potenciais Pós-Sinápticos Excitadores , Feminino , Células HEK293 , Humanos , Mutação com Perda de Função/genética , Lisina/genética , Masculino , Proteínas Mutantes/metabolismo , Ratos Wistar , Proteínas Recombinantes/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Gânglio Cervical Superior/citologia , Enzimas de Conjugação de Ubiquitina/metabolismo
8.
Br J Pharmacol ; 178(4): 860-877, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33283269

RESUMO

Hypertension is often characterised by impaired vasodilation involving dysfunction of multiple vasodilatory mechanisms. ω-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) can reduce blood pressure and vasodilation. In the endothelium, DHA and EPA improve function including increased NO bioavailability. However, animal studies show that DHA- and EPA-mediated vasodilation persists after endothelial removal, indicating a role for vascular smooth muscle cells (VSMCs). The vasodilatory effects of ω-3 PUFAs on VSMCs are mediated via opening of large conductance calcium-activated potassium channels (BKCa ), ATP-sensitive potassium channels (KATP ) and possibly members of the Kv 7 family of voltage-activated potassium channels, resulting in hyperpolarisation and relaxation. ω-3 PUFA actions on BKCa and voltage-gated ion channels involve electrostatic interactions that are dependent on the polyunsaturated acyl tail, cis-geometry of these double bonds and negative charge of the carboxyl headgroup. This suggests structural manipulation of ω-3 PUFA could generate novel, targeted, therapeutic leads.


Assuntos
Ácidos Graxos Ômega-3 , Hipertensão , Animais , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Vasodilatação
9.
Biomolecules ; 10(12)2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33353222

RESUMO

Due to the ageing population, there is a steadily increasing incidence of osteoporosis and osteoporotic fractures. As conventional pharmacological therapy options for osteoporosis are often associated with severe side effects, bone grafts are still considered the clinical gold standard. However, the availability of viable, autologous bone grafts is limited making alternative cell-based strategies a promising therapeutic alternative. Adipose-derived stem cells (ASCs) are a readily available population of mesenchymal stem/stromal cells (MSCs) that can be isolated within minimally invasive surgery. This ease of availability and their ability to undergo osteogenic differentiation makes ASCs promising candidates for cell-based therapies for bone fractures. Recent studies have suggested that both exposure to electrical fields and cultivation in 3D can positively affect osteogenic potential of MSCs. To elucidate the osteoinductive potential of a combination of these biophysical cues on ASCs, cells were embedded within anionic nanofibrillar cellulose (aNFC) hydrogels and exposed to electrical stimulation (ES) for up to 21 days. ES was applied to ASCs in 2D and 3D at a voltage of 0.1 V/cm with a duration of 0.04 ms, and a frequency of 10 Hz for 30 min per day. Exposure of ASCs to ES in 3D resulted in high alkaline phosphatase (ALP) activity and in an increased mineralisation evidenced by Alizarin Red S staining. Moreover, ES in 3D aNFC led to an increased expression of the osteogenic markers osteopontin and osteocalcin and a rearrangement and alignment of the actin cytoskeleton. Taken together, our data suggest that a combination of ES with 3D cell culture can increase the osteogenic potential of ASCs. Thus, exposure of ASCs to these biophysical cues might improve the clinical outcomes of regenerative therapies in treatment of osteoporotic fractures.


Assuntos
Adipócitos/citologia , Celulose/química , Nanofibras/química , Células-Tronco/citologia , Envelhecimento , Fosfatase Alcalina/metabolismo , Antraquinonas/farmacologia , Biofísica , Cálcio/metabolismo , Técnicas de Cultura de Células , Diferenciação Celular , Estimulação Elétrica , Humanos , Hidrogéis , Osteocalcina/metabolismo , Osteogênese , Osteopontina/metabolismo
10.
AIMS Neurosci ; 7(2): 94-106, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32607414

RESUMO

Since formulation of the Astrocyte-Neuron Lactate Shuttle (ANLS) hypothesis in 1994, the hypothesis has provoked criticism and debate. Our review does not criticise, but rather integrates experimental data characterizing proton-linked monocarboxylate transporters (MCTs) into the ANLS. MCTs have wide substrate specificity and are discussed to be in protein complex with a proton donor (PD). We particularly focus on the proton-driven transfer of l-lactic acid (l-lacH) and pyruvic acid (pyrH), were PDs link MCTs to a flow of energy. The precise nature of the PD predicts the activity and catalytic direction of MCTs. By doing so, we postulate that the MCT4·phosphoglycerate kinase complex exports and at the same time in the same astrocyte, MCT1·carbonic anhydrase II complex imports monocarboxylic acids. Similarly, neuronal MCT2 preferentially imports pyrH. The repertoire of MCTs in astrocytes and neurons allows them to communicate via monocarboxylic acids. A change in imported pyrH/l-lacH ratio in favour of l-lacH encodes signals stabilizing the transit of glucose from astrocytes to neurons. The presented astrocyte neuron communication hypothesis has the potential to unite the community by suggesting that the exchange of monocarboxylic acids paves the path of glucose provision.

11.
FASEB J ; 34(8): 10027-10040, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32592197

RESUMO

Aspirin prevents thrombosis by inhibiting platelet cyclooxygenase (COX)-1 activity and the production of thromboxane (Tx)A2 , a pro-thrombotic eicosanoid. However, the non-platelet actions of aspirin limit its antithrombotic effects. Here, we used platelet-COX-1-ko mice to define the platelet and non-platelet eicosanoids affected by aspirin. Mass-spectrometry analysis demonstrated blood from platelet-COX-1-ko and global-COX-1-ko mice produced similar eicosanoid profiles in vitro: for example, formation of TxA2 , prostaglandin (PG) F2α , 11-hydroxyeicosatraenoic acid (HETE), and 15-HETE was absent in both platelet- and global-COX-1-ko mice. Conversely, in vivo, platelet-COX-1-ko mice had a distinctly different profile from global-COX-1-ko or aspirin-treated control mice, notably significantly higher levels of PGI2 metabolite. Ingenuity Pathway Analysis (IPA) predicted that platelet-COX-1-ko mice would be protected from thrombosis, forming less pro-thrombotic TxA2 and PGE2 . Conversely, aspirin or lack of systemic COX-1 activity decreased the synthesis of anti-aggregatory PGI2 and PGD2 at non-platelet sites leading to predicted thrombosis increase. In vitro and in vivo thrombosis studies proved these predictions. Overall, we have established the eicosanoid profiles linked to inhibition of COX-1 in platelets and in the remainder of the cardiovascular system and linked them to anti- and pro-thrombotic effects of aspirin. These results explain why increasing aspirin dosage or aspirin addition to other drugs may lessen antithrombotic protection.


Assuntos
Aspirina/farmacologia , Plaquetas/metabolismo , Ciclo-Oxigenase 1/fisiologia , Inibidores de Ciclo-Oxigenase/farmacologia , Eicosanoides/metabolismo , Proteínas de Membrana/fisiologia , Trombose/metabolismo , Animais , Ácido Araquidônico/administração & dosagem , Plaquetas/efeitos dos fármacos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Trombose/tratamento farmacológico , Trombose/patologia
13.
Neural Regen Res ; 14(7): 1196-1201, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30804245

RESUMO

Toll-like receptor 4 (TLR4) and protease-activated receptor 2 (PAR2) play pivotal roles in the mammalian innate immune response. Notably, in addition to their involvement in detection of invading pathogens, PAR2 and TLR4 modulate the levels of cell death-induced sterile inflammation by activating pro- or anti-inflammatory downstream signaling cascades. Within the central nervous system, there is emerging evidence that both receptors are involved in synaptic transmission and brain plasticity. Furthermore, due to their prominent role in mediating neuroinflammation, PAR2 and TLR4 are associated with development and progression of neurodegenerative disorders including but not limited to Alzheimer's disease, Parkinson's disease and multiple sclerosis. In this article, we summarise the current knowledge on the cooperation between PAR2 and TLR4, discuss the potential cross-talk levels and highlight the impact of the cross-coupling on neuroinflammation.

14.
Handb Exp Pharmacol ; 255: 37-64, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30151722

RESUMO

Calcitonin gene-related peptide (CGRP) is a promiscuous peptide, similar to many other members of the calcitonin family of peptides. The potential of CGRP to act on many different receptors with differing affinities and efficacies makes deciphering the signalling from the CGRP receptor a challenging task for researchers.Although it is not a typical G protein-coupled receptor (GPCR), in that it is composed not just of a GPCR, the CGRP receptor activates many of the same signalling pathways common for other GPCRs. This includes the family of G proteins and a variety of protein kinases and transcription factors. It is now also clear that in addition to the initiation of cell-surface signalling, GPCRs, including the CGRP receptor, also activate distinct signalling pathways as the receptor is trafficking along the endocytic conduit.Given CGRP's characteristic of activating multiple GPCRs, we will first consider the complex of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1) as the CGRP receptor. We will discuss the discovery of the CGRP receptor components, the molecular mechanisms controlling its internalization and post-endocytic trafficking (recycling and degradation) and the diverse signalling cascades that are elicited by this receptor in model cell lines. We will then discuss CGRP-mediated signalling pathways in primary cells pertinent to migraine including neurons, glial cells and vascular smooth muscle cells.Investigation of all the CGRP- and CGRP receptor-mediated signalling cascades is vital if we are to fully understand CGRP's role in migraine and will no doubt unearth new targets for the treatment of migraine and other CGRP-driven diseases.


Assuntos
Neurônios , Receptores de Peptídeo Relacionado com o Gene de Calcitonina , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Neuroglia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Transdução de Sinais
15.
J Neurosci ; 38(43): 9186-9201, 2018 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-30181139

RESUMO

The putative cache (Ca2+ channel and chemotaxis receptor) domain containing 1 (CACHD1) protein has predicted structural similarities to members of the α2δ voltage-gated Ca2+ channel auxiliary subunit family. CACHD1 mRNA and protein were highly expressed in the male mammalian CNS, in particular in the thalamus, hippocampus, and cerebellum, with a broadly similar tissue distribution to CaV3 subunits, in particular CaV3.1. In expression studies, CACHD1 increased cell-surface localization of CaV3.1, and these proteins were in close proximity at the cell surface, consistent with the formation of CACHD1-CaV3.1 complexes. In functional electrophysiological studies, coexpression of human CACHD1 with CaV3.1, CaV3.2, and CaV3.3 caused a significant increase in peak current density and corresponding increases in maximal conductance. By contrast, α2δ-1 had no effect on peak current density or maximal conductance in CaV3.1, CaV3.2, or CaV3.3. A comparison of CACHD1-mediated increases in CaV3.1 current density and gating currents revealed an increase in channel open probability. In hippocampal neurons from male and female embryonic day 19 rats, CACHD1 overexpression increased CaV3-mediated action potential firing frequency and neuronal excitability. These data suggest that CACHD1 is structurally an α2δ-like protein that functionally modulates CaV3 voltage-gated calcium channel activity.SIGNIFICANCE STATEMENT This is the first study to characterize the Ca2+ channel and chemotaxis receptor domain containing 1 (CACHD1) protein. CACHD1 is widely expressed in the CNS, in particular in the thalamus, hippocampus, and cerebellum. CACHD1 distribution is similar to that of low voltage-activated (CaV3, T-type) calcium channels, in particular to CaV3.1, a protein that regulates neuronal excitability and is a potential therapeutic target in conditions such as epilepsy and pain. CACHD1 is structurally an α2δ-like protein that functionally increases CaV3 calcium current. CACHD1 increases the presence of CaV3.1 at the cell surface, forms complexes with CaV3.1 at the cell surface, and causes an increase in channel open probability. In hippocampal neurons, CACHD1 causes increases in neuronal firing. Thus, CACHD1 represents a novel protein that modulates CaV3 activity.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Canais de Cálcio Tipo T/biossíntese , Hipocampo/metabolismo , Proteínas de Membrana/metabolismo , Animais , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Canais de Cálcio Tipo T/química , Canais de Cálcio Tipo T/genética , Feminino , Células HEK293 , Humanos , Masculino , Proteínas de Membrana/química , Proteínas de Membrana/genética , Ratos , Ratos Wistar
16.
Front Neurosci ; 12: 404, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29962930

RESUMO

The Embden-Meyerhof-Parnas (EMP) pathway comprises eleven cytosolic enzymes interacting to metabolize glucose to lactic acid [CH3CH(OH)COOH]. Glycolysis is largely considered as the conversion of glucose to pyruvate (CH3COCOO-). We consider glycolysis to be a cellular process and as such, transporters mediating glucose uptake and lactic acid release and enable the flow of metabolites through the cell, must be considered as part of the EMP pathway. In this review, we consider the flow of metabolites to be coupled to a flow of energy that is irreversible and sufficient to form ordered structures. This latter principle is highlighted by discussing that lactate dehydrogenase (LDH) complexes irreversibly reduce pyruvate/H+ to lactate [CH3CH(OH)COO-], or irreversibly catalyze the opposite reaction, oxidation of lactate to pyruvate/H+. However, both LDH complexes are considered to be driven by postulated proton transport chains. Metabolism of glucose to two lactic acids is introduced as a unidirectional, continuously flowing pathway. In an organism, cell membrane-located proton-linked monocarboxylate transporters catalyze the final step of glycolysis, the release of lactic acid. Consequently, both pyruvate and lactate are discussed as intermediate products of glycolysis and substrates of regulated crosscuts of the glycolytic flow.

17.
PLoS One ; 13(2): e0192484, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29394279

RESUMO

BACKGROUND AND PURPOSE: Increasing evidence suggests that the omega-3 polyunsaturated acids (n-3 PUFA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), are beneficial to cardiovascular health, promoting relaxation of vascular smooth muscle cells and vasodilation. Numerous studies have attempted to study these responses, but to date there has not been a systematic characterisation of both DHA and EPA mediated vasodilation in conduit and resistance arteries. Therefore, we aimed to fully characterise the n-3 PUFA-induced vasodilation pathways in rat aorta and mesenteric artery. METHODS: Wire myography was used to measure the vasomotor responses of freshly dissected rat mesenteric artery and aorta. Arteries were pre-constricted with U46619 and cumulative concentrations of either DHA or EPA (10 nM-30 µM) were added. The mechanisms by which n-3 PUFA relaxed arteries were investigated using inhibitors of vasodilator pathways, which include: nitric oxide synthase (NOS; L-NAME), cycloxygenase (COX; indomethacin), cytochrome P450 epoxygenase (CYP450; clotrimazole); and calcium-activated potassium channels (KCa), SKCa (apamin), IKCa (TRAM-34) and BKCa (paxilline). RESULTS: Both DHA- and EPA-induced relaxations were partially inhibited following endothelium removal in rat mesenteric arteries. Similarly, in aorta EPA-induced relaxation was partially suppressed due to endothelium removal. CYP450 also contributed to EPA-induced relaxation in mesenteric artery. Inhibition of IKCa partially attenuated DHA-induced relaxation in aorta and mesenteric artery along with EPA-induced relaxation in mesenteric artery. Furthermore, this inhibition of DHA- and EPA-induced relaxation was increased following the additional blockade of BKCa in these arteries. CONCLUSIONS: This study provides evidence of heterogeneity in the vasodilation mechanisms of DHA and EPA in different vascular beds. Our data also demonstrates that endothelium removal has little effect on relaxations produced by either PUFA. We demonstrate IKCa and BKCa are involved in DHA-induced relaxation in rat aorta and mesenteric artery; and EPA-induced relaxation in rat mesenteric artery only. CYP450 derived metabolites of EPA may also be involved in BKCa dependent relaxation. To our knowledge this is the first study indicating the involvement of IKCa in n-3 PUFA mediated relaxation.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Masculino , Óxido Nítrico Sintase Tipo III/farmacologia , Ratos
18.
Sci Signal ; 10(503)2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089449

RESUMO

In humans, invading pathogens are recognized by Toll-like receptors (TLRs). Upon recognition of lipopolysaccharide (LPS) derived from the cell wall of Gram-negative bacteria, TLR4 dimerizes and can stimulate two different signaling pathways, the proinflammatory, MyD88-dependent pathway and the antiviral, MyD88-independent pathway. The balance between these two pathways is ligand-dependent, and ligand composition determines whether the invading pathogen activates or evades the host immune response. We investigated the dimerization behavior of TLR4 in intact cells in response to different LPS chemotypes through quantitative single-molecule localization microscopy. Quantitative superresolved data showed that TLR4 was monomeric in the absence of its co-receptors MD2 and CD14 in transfected HEK 293 cells. When TLR4 was present together with MD2 and CD14 but in the absence of LPS, 52% of the receptors were monomeric and 48% were dimeric. LPS from Escherichia coli or Salmonella minnesota caused the formation of dimeric TLR4 complexes, whereas the antagonistic LPS chemotype from Rhodobacter sphaeroides maintained TLR4 in monomeric form at the cell surface. Furthermore, we showed that LPS-dependent dimerization was required for the activation of NF-κB signaling. Together, these data demonstrate ligand-dependent dimerization of TLR4 in the cellular environment, which could pave the way for a molecular understanding of biased signaling downstream of the receptor.


Assuntos
Lipopolissacarídeos/imunologia , Multimerização Proteica , Imagem Individual de Molécula/métodos , Receptor 4 Toll-Like/metabolismo , Escherichia coli/imunologia , Células HEK293 , Humanos , Ligantes , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Antígeno 96 de Linfócito/genética , Antígeno 96 de Linfócito/metabolismo , Fator 88 de Diferenciação Mieloide/metabolismo , Subunidade p50 de NF-kappa B/genética , Subunidade p50 de NF-kappa B/metabolismo , Salmonella/imunologia , Receptor 4 Toll-Like/genética , Transfecção
19.
Sci Rep ; 7(1): 12389, 2017 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-28959041

RESUMO

Calcitonin receptor-like receptor (CLR) and the receptor activity-modifying protein 2 (RAMP2) comprise a receptor for adrenomedullin (AM). Although it is known that AM induces internalization of CLR•RAMP2, little is known about the molecular mechanisms that regulate the trafficking of CLR•RAMP2. Using HEK and HMEC-1 cells, we observed that AM-induced activation of CLR•RAMP2 promoted ubiquitination of CLR. A mutant (CLRΔ9KR), lacking all intracellular lysine residues was functional and trafficked similar to the wild-type receptor, but was not ubiquitinated. Degradation of CLR•RAMP2 and CLRΔ9KR•RAMP2 was not dependent on the duration of AM stimulation or ubiquitination and occurred via a mechanism that was partially prevented by peptidase inhibitors. Degradation of CLR•RAMP2 was sensitive to overexpression of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), but not to HRS knockdown, whereas CLRΔ9KR•RAMP2 degradation was unaffected. Overexpression, but not knockdown of HRS, promoted hyperubiquitination of CLR under basal conditions. Thus, we propose a role for ubiquitin and HRS in the regulation of AM-induced degradation of CLR•RAMP2.


Assuntos
Adrenomedulina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Fosfoproteínas/metabolismo , Receptores de Adrenomedulina/metabolismo , Ubiquitinação/fisiologia , Proteína Semelhante a Receptor de Calcitonina/genética , Proteína Semelhante a Receptor de Calcitonina/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Fosfoproteínas/genética , Transporte Proteico , Proteólise , RNA Interferente Pequeno/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/genética , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Ubiquitina/metabolismo
20.
Mediators Inflamm ; 2017: 6209865, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28790798

RESUMO

Aberrant activation of the transcription factor NF-κB, as well as uncontrolled inflammation, has been linked to autoimmune diseases, development and progression of cancer, and neurological disorders like Alzheimer's disease. Reporter cell lines are a valuable state-of-the art tool for comparative analysis of in vitro drug screening. However, a reporter cell line for the investigation of NF-κB-driven neuroinflammation has not been available. Thus, we developed a stable neural NF-κB-reporter cell line to assess the potency of proinflammatory molecules and peptides, as well as anti-inflammatory pharmaceuticals. We used lentivirus to transduce the glioma cell line U251-MG with a tandem NF-κB reporter construct containing GFP and firefly luciferase allowing an assessment of NF-κB activity via fluorescence microscopy, flow cytometry, and luminometry. We observed a robust activation of NF-κB after exposure of the reporter cell line to tumour necrosis factor alpha (TNFα) and amyloid-ß peptide [1-42] as well as to LPS derived from Salmonella minnesota and Escherichia coli. Finally, we demonstrate that the U251-NF-κB-GFP-Luc reporter cells can be used for assessing the anti-inflammatory potential of pharmaceutical compounds using Bay11-7082 and IMD0354. In summary, our newly generated cell line is a robust and cost-efficient tool to study pro- and anti-inflammatory potential of drugs and biologics in neural cells.


Assuntos
Inflamação/metabolismo , NF-kappa B/metabolismo , Benzamidas/farmacologia , Linhagem Celular , Escherichia coli/imunologia , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Imuno-Histoquímica , Inflamação/imunologia , Nitrilas/farmacologia , Salmonella/imunologia , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...