Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sens Diagn ; 3(5): 799-808, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38766392

RESUMO

Tomatoes (Solanum lycopersicum), a high-value crop, exhibit a unique relationship with salt, where increased levels of NaCl can enhance flavor, aroma and nutritional quality but can cause oxidative damage and reduce yields. A drive for larger, better-looking tomatoes has reduced the importance of salt sensitivity, a concern considering that the sodium content of agricultural land is increasing over time. Currently, there are no simple ways of comparing salt tolerance between plants, where a holistic approach looking at [Na+] throughout the plant typically involves destructive, single time point measurements or expensive imaging techniques. Finding methods that collect rapid information in real time could improve the understanding of salt resistance in the field. Here we investigate the uptake of NaCl by tomatoes using TETRIS (Time-resolved Electrochemical Technology for plant Root environment In situ chemical Sensing), a platform used to measure chemical signals in the root area of living plants. Low-cost, screen-printed electrochemical sensors were used to measure changes in salt concentration via electrical impedance measurements, facilitating the monitoring of the uptake of ions by roots. We not only demonstrated differences in the rate of uptake of NaCl between tomato seedlings under different growth conditions, but also showed differences in uptake between varieties of tomato with different NaCl sensitivities and the relatively salt-resistant "wild tomato" (Solanum pimpinellifolium) sister species. Our results suggest that TETRIS could be used to ascertain physiological traits of salt resistance found in adult plants but at the seedling stage of growth. This extrapolation, and the possibility to multiplex and change sensor configuration, could enable high-throughput screening of many hundreds or thousands of mutants or varieties.

2.
Adv Sci (Weinh) ; : e2400225, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531063

RESUMO

Accurate quantification of hypersensitive response (HR) programmed cell death is imperative for understanding plant defense mechanisms and developing disease-resistant crop varieties. Here, a phenotyping platform for rapid, continuous-time, and quantitative assessment of HR is demonstrated: Parallel Automated Spectroscopy Tool for Electrolyte Leakage (PASTEL). Compared to traditional HR assays, PASTEL significantly improves temporal resolution and has high sensitivity, facilitating detection of microscopic levels of cell death. Validation is performed by transiently expressing the effector protein AVRblb2 in transgenic Nicotiana benthamiana (expressing the corresponding resistance protein Rpi-blb2) to reliably induce HR. Detection of cell death is achieved at microscopic intensities, where leaf tissue appears healthy to the naked eye one week after infiltration. PASTEL produces large amounts of frequency domain impedance data captured continuously. This data is used to develop supervised machine-learning (ML) models for classification of HR. Input data (inclusive of the entire tested concentration range) is classified as HR-positive or negative with 84.1% mean accuracy (F1 score = 0.75) at 1 h and with 87.8% mean accuracy (F1 score = 0.81) at 22 h. With PASTEL and the ML models produced in this work, it is possible to phenotype disease resistance in plants in hours instead of days to weeks.

3.
Biosens Bioelectron ; 251: 116124, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38359669

RESUMO

Rapid detection of pathogens at the point-of-need is crucial for preventing the spread of human, animal and plant diseases which can have devastating consequences both on the lives and livelihood of billions of people. Colorimetric, lateral flow assays consisting of a nitrocellulose membrane, are the preferred format today for low-cost on-site detection of pathogens. This assay format has, however, historically suffered from poor analytical performance and is not compatible with digital technologies. In this work, we report the development of a new class of digital diagnostics platform for precision point-of-need testing. This new versatile platform consists of two important innovations: i) A wireless and batteryless, microcontroller-based, low-cost Near Field Communication (NFC)-enabled potentiostat that brings high performance electroanalytical techniques (cyclic voltammetry, chronoamperometry, square wave voltammetry) to the field. The NFC-potentiostat can be operated with a mobile app by minimally trained users; ii) A new approach for producing nitrocellulose membranes with integrated electrodes that facilitate high performance electrochemical detection at the point-of-need. We produced an integrated system housed in a 3D-printed phone case and demonstrated its use for the detection of Maize Mosaic Virus (MMV), a plant pathogen, as a proof-of-concept application.


Assuntos
Técnicas Biossensoriais , Humanos , Colódio , Eletrodos
4.
Sci Adv ; 10(5): eadj6315, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38295162

RESUMO

Traditional single-point measurements fail to capture dynamic chemical responses of plants, which are complex, nonequilibrium biological systems. We report TETRIS (time-resolved electrochemical technology for plant root environment in situ chemical sensing), a real-time chemical phenotyping system for continuously monitoring chemical signals in the often-neglected plant root environment. TETRIS consisted of low-cost, highly scalable screen-printed electrochemical sensors for monitoring concentrations of salt, pH, and H2O2 in the root environment of whole plants, where multiplexing allowed for parallel sensing operation. TETRIS was used to measure ion uptake in tomato, kale, and rice and detected differences between nutrient and heavy metal ion uptake. Modulation of ion uptake with ion channel blocker LaCl3 was monitored by TETRIS and machine learning used to predict ion uptake. TETRIS has the potential to overcome the urgent "bottleneck" in high-throughput screening in producing high-yielding plant varieties with improved resistance against stress.


Assuntos
Peróxido de Hidrogênio , Metais , Plantas , Aprendizado de Máquina , Raízes de Plantas
5.
Adv Mater ; 34(33): e2203310, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35730340

RESUMO

A bio-inspired continuous wearable respiration sensor modeled after the lateral line system of fish is reported which is used for detecting mechanical disturbances in the water. Despite the clinical importance of monitoring respiratory activity in humans and animals, continuous measurements of breathing patterns and rates are rarely performed in or outside of clinics. This is largely because conventional sensors are too inconvenient or expensive for wearable sensing for most individuals and animals. The bio-inspired air-silicone composite transducer (ASiT) is placed on the chest and measures respiratory activity by continuously measuring the force applied to an air channel embedded inside a silicone-based elastomeric material. The force applied on the surface of the transducer during breathing changes the air pressure inside the channel, which is measured using a commercial pressure sensor and mixed-signal wireless electronics. The transducer produced in this work are extensively characterized and tested with humans, dogs, and laboratory rats. The bio-inspired ASiT may enable the early detection of a range of disorders that result in altered patterns of respiration. The technology reported can also be combined with artificial intelligence and cloud computing to algorithmically detect illness in humans and animals remotely, reducing unnecessary visits to clinics.


Assuntos
Dispositivos Eletrônicos Vestíveis , Animais , Inteligência Artificial , Cães , Humanos , Monitorização Fisiológica , Silicones , Transdutores
6.
Nat Commun ; 11(1): 6176, 2020 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-33268779

RESUMO

Rapid screening and low-cost diagnosis play a crucial role in choosing the correct course of intervention when dealing with highly infectious pathogens. This is especially important if the disease-causing agent has no effective treatment, such as the novel coronavirus SARS-CoV-2, and shows no or similar symptoms to other common infections. Here, we report a disposable silicon-based integrated Point-of-Need transducer (TriSilix) for real-time quantitative detection of pathogen-specific sequences of nucleic acids. TriSilix can be produced at wafer-scale in a standard laboratory (37 chips of 10 × 10 × 0.65 mm in size can be produced in 7 h, costing ~0.35 USD per device). We are able to quantitatively detect a 563 bp fragment of genomic DNA of Mycobacterium avium subspecies paratuberculosis through real-time PCR with a limit-of-detection of 20 fg, equivalent to a single bacterium, at the 35th cycle. Using TriSilix, we also detect the cDNA from SARS-CoV-2 (1 pg) with high specificity against SARS-CoV (2003).


Assuntos
COVID-19/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , DNA Bacteriano/genética , Humanos , Mycobacterium avium subsp. paratuberculosis/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Viral/genética , SARS-CoV-2/genética , Sensibilidade e Especificidade , Silício
8.
Adv Funct Mater ; 30(15): 1910288, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33071715

RESUMO

A highly flexible, stretchable, and mechanically robust low-cost soft composite consisting of silicone polymers and water (or hydrogels) is reported. When combined with conventional acoustic transducers, the materials reported enable high performance real-time monitoring of heart and respiratory patterns over layers of clothing (or furry skin of animals) without the need for direct contact with the skin. The approach enables an entirely new method of fabrication that involves encapsulation of water and hydrogels with silicones and exploits the ability of sound waves to travel through the body. The system proposed outperforms commercial, metal-based stethoscopes for the auscultation of the heart when worn over clothing and is less susceptible to motion artefacts. The system both with human and furry animal subjects (i.e., dogs), primarily focusing on monitoring the heart, is tested; however, initial results on monitoring breathing are also presented. This work is especially important because it is the first demonstration of a stretchable sensor that is suitable for use with furry animals and does not require shaving of the animal for data acquisition.

9.
ACS Appl Mater Interfaces ; 11(50): 47577-47586, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31714731

RESUMO

We report a method of creating solderable, mechanically robust, electrical contacts to interface (soft) silicone-based strain sensors with conventional (hard) solid-state electronics using a nanoporous Si-Cu composite. The Si-based solder-on electrical contact consists of a copper-plated nanoporous Si top surface formed through metal-assisted chemical etching and electroplating and a smooth Si bottom surface that can be covalently bonded onto silicone-based strain sensors through plasma bonding. We investigated the mechanical and electrical properties of the contacts proposed under relevant ranges of mechanical stress for applications in physiological monitoring and rehabilitation. We also produced a series of proof-of-concept devices, including a wearable respiration monitor, leg band for exercise monitoring, and squeeze ball for monitoring rehabilitation of patients with hand injuries or neurological disorders to demonstrate the mechanical robustness and versatility of the technology developed in real-world applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...