Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 27(3): e14410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38519453

RESUMO

Local minority languages and dialects, through the local knowledge and expertise associated with them, can play major roles in analysing climate change and biodiversity loss, in facilitating community awareness of environmental crises and in setting up locally-adapted resilience and sustainability strategies. While the situation and contribution of Indigenous and Tribal Peoples are of emblematic importance, the issue of the relationships between cultural and linguistic diversity and environmental awareness and protection does not solely concern peripheral highly-specialized communities in specific ecosystems of the Global South, but constitutes a worldwide challenge, throughout all of the countries, whatever their geographical location, their economical development, or their political status. Environmental emergency and climate change resilience should therefore raise international awareness on the need to promote the survival and development of minority languages and dialects and to take into account their creativity and expertise in relation to the dynamics of their local environments.


Assuntos
Ecossistema , Resiliência Psicológica , Mudança Climática , Linguística , Diversidade Cultural
2.
Methods Mol Biol ; 2642: 3-22, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36944870

RESUMO

Characterizing the mechanisms of plant sensitivity and reactivity to physicochemical cues related to abiotic stresses is of utmost importance for understanding plant-environment interactions, adaptations of the sessile lifestyle, and the evolutionary dynamics of plant species and populations. Moreover, plant communities are confronted with an environmental context of global change, involving climate changes, planetary pollutions of soils, waters and atmosphere, and additional anthropogenic changes. The mechanisms through which plants perceive abiotic stress stimuli and transduce stress perception into physiological responses constitute the primary line of interaction between the plant and the environment, and therefore between the plant and global changes. Understanding how plants perceive complex combinations of abiotic stress signals and transduce the resulting information into coordinated responses of abiotic stress tolerance is therefore essential for devising genetic, agricultural, and agroecological strategies that can ensure climate change resilience, global food security, and environmental protection. Discovery and characterization of sensing and signaling mechanisms of plant cells are usually carried out within the general framework of eukaryotic sensing and signal transduction. However, further progress depends on a close relationship between the conceptualization of sensing and signaling processes with adequate methodologies and techniques that encompass biochemical and biophysical approaches, cell biology, molecular biology, and genetics. The integration of subcellular and cellular analyses as well as the integration of in vitro and in vivo analyses are particularly important to evaluate the efficiency of sensing and signaling mechanisms in planta. Major progress has been made in the last 10-20 years with the caveat that cell-specific processes and in vivo processes still remain difficult to analyze and with the additional caveat that the range of plant models under study remains rather limited relatively to plant biodiversity and to the diversity of stress situations.


Assuntos
Formação de Conceito , Plantas , Plantas/genética , Estresse Fisiológico/genética , Solo , Transdução de Sinais
3.
Methods Mol Biol ; 2642: 319-330, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36944886

RESUMO

The identification and characterization of bona fide abiotic stress signaling proteins can occur at different levels of the complete in vivo signaling cascade or network. Knowledge of a particular abiotic stress signaling protein could theoretically lead to the characterization of complete networks through the analysis of unknown proteins that interact with the previously known protein. Such signaling proteins of interest can indeed be experimentally used as bait proteins to catch interacting prey proteins, provided that the association of bait proteins and prey proteins should yield a biochemical or biophysical signal that can be detected. To this end, several biochemical and biophysical techniques are available to provide experimental evidence for specific protein-protein interactions, such as co-immunoprecipitation, bimolecular fluorescence complementation, tandem affinity purification coupled to mass spectrometry, yeast two hybrid, protein microarrays, Förster resonance energy transfer, or fluorescence correlation spectroscopy. This array of methods can be implemented to establish the biochemical reality of putative protein-protein interactions between two proteins of interest or to identify previously unknown partners related to an initially known protein of interest. The ultimate validity of these methods however depends on the in vitro/in vivo nature of the approach and on the heterologous/homologous context of the analysis. This chapter will review the application and success of some classical methods of protein-protein interaction analysis in the field of plant abiotic stress signaling.


Assuntos
Proteínas , Transdução de Sinais , Transferência Ressonante de Energia de Fluorescência/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Espectrometria de Fluorescência , Estresse Fisiológico
4.
Methods Mol Biol ; 2642: 429-444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36944892

RESUMO

State-of-the-art collections of strategies, approaches, and methods are immediately useful for ongoing characterizations or for novel discoveries in the scientific field of plant abiotic stress signaling. It must however be kept in mind that, in the future, these strategies, approaches, and methods will be facing a number of increasingly complex issues. The development of the necessary confrontation of laboratory-based knowledge on abiotic stress signaling mechanisms with real-life in natura situations of plant-stress interactions involves at least five levels of complexity: (i) plant biodiversity, (ii) the spatio-temporal heterogeneity of stress-related parameters, (iii) the unknowns of future stress-related constraints, (iv) the influence of biotic interactions, (v) the crosstalk between various signaling pathways and their final integration into physiological responses. These complexities are major bottlenecks for assessing the evolutionary, ecological, and agronomical relevance of abiotic stress signaling studies. All of the presently-described strategies, approaches, and methods will have to be gradually complemented with the development of real-time and in natura tools, with systematic application of mathematical modeling to complex interactions and with further research on the impact of stress memory mechanisms on long-term responses.


Assuntos
Biologia Molecular , Plantas , Transdução de Sinais , Mudança Climática , Estresse Fisiológico , Ecossistema , Biologia Molecular/métodos
5.
Proc Natl Acad Sci U S A ; 119(23): e2204376119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653560

Assuntos
Linguística , Ciência
6.
Sci Total Environ ; 778: 146108, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33714095

RESUMO

Ecological interactions are rarely taken into account in environmental risk assessment. The objective of this work was to assess how interspecific competition affects the way plant species react to herbicides and more specifically how it modifies the concentration-response curves that can be built using ecotoxicological bioassays. To do this, we relied on the results of ecotoxicological bioassays on six herbaceous species exposed to isoproturon under two conditions: in presence and in absence of a competitor. At the end of the experiments, eleven endpoints were measured. We modelled these data using a hierarchical modelling framework designed to assess the effects of competition on each of the four parameters of the concentration response curves (e.g. the level of response at the control or the concentration at the inflection point of the curve) simultaneously for the six species. The modelled effects could be of three types, 1) competition had no effect on the parameter, 2) competition had the same effect on the parameter for all species and 3) competition had a different effect on the parameter for each species. Our main hypothesis was that different species would react differently to competition. Results showed that about a half of the estimated parameters showed a modification under competition pressure among which only a fourth showed a species-specific effect, the three other fourth showing the same effect between the different species. Our initial hypothesis was thus not supported as species tended to react in the same way to competition. The competition effect on plants was mainly negative, thus showing that they were more affected by isoproturon under competition pressure. This study therefore establishes how competition modifies plant responses to chemical stress and how this interaction varies from one species to the other.


Assuntos
Herbicidas , Ecotoxicologia , Herbicidas/toxicidade , Plantas , Poaceae , Especificidade da Espécie
7.
EMBO Rep ; 21(8): e50796, 2020 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-32779879

RESUMO

A thorough analysis of the underlying worldviews and anthropologies of science and the language it uses could help to maintain the rigour of science and public trust in research.


Assuntos
Ciências Humanas , Confiança
8.
J Exp Bot ; 71(19): 5771-5785, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32687568

RESUMO

Plant life relies on complex arrays of environmental stress sensing and signalling mechanisms. Extremophile plants develop and grow in harsh environments with extremes of cold, heat, drought, desiccation, or salinity, which have resulted in original adaptations. In accordance with their polyphyletic origins, extremophile plants likely possess core mechanisms of plant abiotic stress signalling. However, novel properties or regulations may have emerged in the context of extremophile adaptations. Comparative omics of extremophile genetic models, such as Arabidopsis lyrata, Craterostigma plantagineum, Eutrema salsugineum, and Physcomitrella patens, reveal diverse strategies of sensing and signalling that lead to a general improvement in abiotic stress responses. Current research points to putative differences of sensing and emphasizes significant modifications of regulatory mechanisms, at the level of secondary messengers (Ca2+, phospholipids, reactive oxygen species), signal transduction (intracellular sensors, protein kinases, transcription factors, ubiquitin-mediated proteolysis) or signalling crosstalk. Involvement of hormone signalling, especially ABA signalling, cell homeostasis surveillance, and epigenetic mechanisms, also shows that large-scale gene regulation, whole-plant integration, and probably stress memory are important features of adaptation to extreme conditions. This evolutionary and functional plasticity of signalling systems in extremophile plants may have important implications for plant biotechnology, crop improvement, and ecological risk assessment under conditions of climate change.


Assuntos
Arabidopsis , Brassicaceae , Extremófilos , Ácido Abscísico , Arabidopsis/genética , Secas , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Estresse Fisiológico
9.
Sci Total Environ ; 744: 140772, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-32711307

RESUMO

Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. Understanding the complex effects of soil pollution requires multi-level and multi-scale approaches. Non-target and agri-environmental plant communities of field margins and vegetative filter strips are confronted with agricultural xenobiotics through soil contamination, drift, run-off and leaching events that result from chemical applications. Plant-pesticide dynamics in vegetative filter strips was studied at field scale in the agricultural landscape of a long-term ecological research network in northern Brittany (France). Vegetative filter strips effected significant pesticide abatement between the field and riparian compartments. However, comparison of pesticide usage modalities and soil chemical analysis revealed the extent and complexity of pesticide persistence in fields and vegetative filter strips, and suggested the contribution of multiple sources (yearly carry-over, interannual persistence, landscape-scale contamination). In order to determine the impact of such persistence, plant dynamics was followed in experimentally-designed vegetative filter strips of identical initial composition (Agrostis stolonifera, Anthemis tinctoria/Cota tinctoria, Centaurea cyanus, Fagopyrum esculentum, Festuca rubra, Lolium perenne, Lotus corniculatus, Phleum pratense, Trifolium pratense). After homogeneous vegetation establishment, experimental vegetative filter strips underwent rapid changes within the following two years, with Agrostis stolonifera, Festuca rubra, Lolium perenne and Phleum pratense becoming dominant and with the establishment of spontaneous vegetation. Co-inertia analysis showed that plant dynamics and soil residual pesticides could be significantly correlated, with the triazole fungicide epoxiconazole, the imidazole fungicide prochloraz and the neonicotinoid insecticide thiamethoxam as strong drivers of the correlation. However, the correlation was vegetative-filter-strip-specific, thus showing that correlation between plant dynamics and soil pesticides likely involved additional factors, such as threshold levels of residual pesticides. This situation of complex interactions between plants and soil contamination is further discussed in terms of agronomical, environmental and health issues.


Assuntos
Ecossistema , Praguicidas , Agricultura , França , Solo
10.
Ecotoxicol Environ Saf ; 200: 110722, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32460047

RESUMO

Species Sensitivity Distributions (SSD) are widely used in environmental risk assessment to predict the concentration of a contaminant that is hazardous for 5% of species (HC5). They are based on monospecific bioassays conducted in the laboratory and thus do not directly take into account ecological interactions. This point, among others, is accounted for in environmental risk assessment through an assessment factor (AF) that is applied to compensate for the lack of environmental representativity. In this study, we aimed to assess the effects of interspecific competition on the responses towards isoproturon of plant species representative of a vegetated filter strip community, and to assess its impact on the derived SSD and HC5 values. To do so, we realized bioassays confronting six herbaceous species to a gradient of isoproturon exposure in presence and absence of a competitor. Several modelling approaches were applied to see how they affected the results, using different critical effect concentrations and investigating different ways to handle multiple endpoints in SSD. At the species level, there was a strong trend toward organisms being more sensitive to isoproturon in presence of a competitor than in its absence. At the community level, this trend was also observed in the SSDs and HC5 values were always lower in presence of a competitor (1.12-11.13 times lower, depending on the modelling approach). Our discussion questions the relevance of SSD and AF as currently applied in environmental risk assessment.


Assuntos
Fenômenos Fisiológicos Vegetais , Plantas/efeitos dos fármacos , Estresse Fisiológico , Bioensaio , Ecossistema , Compostos de Fenilureia/toxicidade , Medição de Risco
11.
Ann Bot ; 125(5): 721-736, 2020 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-31711195

RESUMO

BACKGROUND: Mitochondria play a diversity of physiological and metabolic roles under conditions of abiotic or biotic stress. They may be directly subjected to physico-chemical constraints, and they are also involved in integrative responses to environmental stresses through their central position in cell nutrition, respiration, energy balance and biosyntheses. In plant cells, mitochondria present various biochemical peculiarities, such as cyanide-insensitive alternative respiration, and, besides integration with ubiquitous eukaryotic compartments, their functioning must be coupled with plastid functioning. Moreover, given the sessile lifestyle of plants, their relative lack of protective barriers and present threats of climate change, the plant cell is an attractive model to understand the mechanisms of stress/organelle/cell integration in the context of environmental stress responses. SCOPE: The involvement of mitochondria in this integration entails a complex network of signalling, which has not been fully elucidated, because of the great diversity of mitochondrial constituents (metabolites, reactive molecular species and structural and regulatory biomolecules) that are linked to stress signalling pathways. The present review analyses the complexity of stress signalling connexions that are related to the mitochondrial electron transport chain and oxidative phosphorylation system, and how they can be involved in stress perception and transduction, signal amplification or cell stress response modulation. CONCLUSIONS: Plant mitochondria are endowed with a diversity of multi-directional hubs of stress signalling that lead to regulatory loops and regulatory rheostats, whose functioning can amplify and diversify some signals or, conversely, dampen and reduce other signals. Involvement in a wide range of abiotic and biotic responses also implies that mitochondrial stress signalling could result in synergistic or conflicting outcomes during acclimation to multiple and complex stresses, such as those arising from climate change.


Assuntos
Fosforilação Oxidativa , Plantas , Transporte de Elétrons , Estresse Oxidativo , Espécies Reativas de Oxigênio , Transdução de Sinais , Estresse Fisiológico
12.
Sci Total Environ ; 694: 133661, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31756788

RESUMO

Soil pollution by anthropogenic chemicals is a major concern for sustainability of crop production and of ecosystem functions mediated by natural plant biodiversity. The complex effects on plants are however difficult to apprehend. Plant communities of field margins, vegetative filter strips or rotational fallows are confronted with agricultural pollutants through residual soil contamination and/or through drift, run-off and leaching events that result from chemical applications. Exposure to xenobiotics and heavy metals causes biochemical, physiological and developmental effects. However, the range of doses, modalities of exposure, metabolization of contaminants into derived xenobiotics, and combinations of contaminants result in variable and multi-level effects. Understanding these complex plant-pollutant interactions cannot directly rely on toxicological or agronomical approaches that focus on the effects of field-rate pesticide applications. It must take into account exposure at root level, sublethal concentrations of bioactive compounds and functional biodiversity of the plant species that are affected. The present study deals with agri-environmental plant species of field margins, vegetative filter strips or rotational fallows in European agricultural landscapes. Root and shoot physiological and growth responses were compared under controlled conditions that were optimally adjusted for each plant species. Contrasted responses of growth inhibition, no adverse effect or growth enhancement depended on species, organ and nature of contaminant. However, all of the agricultural contaminants under study (pesticides, pesticide metabolites, heavy metals, polycyclic aromatic hydrocarbons) had significant effects under conditions of sublethal exposure on at least some of the plant species. The fungicide tebuconazole and polycyclic aromatic hydrocarbon fluoranthene, which gave highest levels of responses, induced both activation or inhibition effects, in different plant species or in different organs of the same plant species. These complex effects are discussed in terms of dynamics of agri-environmental plants and of ecological consequences of differential root-shoot growth under conditions of soil contamination.


Assuntos
Agroquímicos/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Agricultura , Ecossistema
13.
J Plant Physiol ; 238: 1-11, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31121522

RESUMO

Treatment of Arabidopsis thaliana seedlings with the PSII-inhibiting herbicide atrazine results in xenobiotic and oxidative stress, developmental arrest, induction of senescence and cell death processes. In contrast, exogenous sucrose supply confers a high level of atrazine stress tolerance, in relation with genome-wide modifications of transcript levels and regulation of genes involved in detoxification, defense and repair. However, the regulation mechanisms related to exogenous sucrose, involved in this sucrose-induced tolerance, are largely unknown. Characterization of these mechanisms was carried out through a combination of transcriptomic, metabolic, functional and mutant analysis under different conditions of atrazine exposure. Exogenous sucrose was found to differentially regulate genes involved in polyamine synthesis. ARGININE DECARBOXYLASE ADC1 and ADC2 paralogues, which encode the rate-limiting enzyme (EC 4.1.1.19) of the first step of polyamine biosynthesis, were strongly upregulated by sucrose treatment in the presence of atrazine. Such regulation occurred concomitantly with significant changes of major polyamines (putrescine, spermidine, spermine). Physiological characterization of a mutant affected in ADC activity and exogenous treatments with sucrose, putrescine, spermidine and spermine further showed that modification of polyamine synthesis and of polyamine levels could play adaptive roles in response to atrazine stress, and that putrescine and spermine had antagonistic effects, especially in the presence of sucrose. This interplay between sucrose, putrescine and spermine is discussed in relation with survival and anti-death mechanisms in the context of chemical stress exposure.


Assuntos
Arabidopsis/efeitos dos fármacos , Atrazina/farmacologia , Herbicidas/farmacologia , Putrescina/metabolismo , Espermidina/metabolismo , Espermina/metabolismo , Sacarose/farmacologia , Arabidopsis/metabolismo , Morte Celular/efeitos dos fármacos , Resistência a Herbicidas , Estresse Oxidativo/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Plântula/efeitos dos fármacos , Plântula/metabolismo , Transcriptoma/efeitos dos fármacos
14.
Plant Sci ; 274: 8-22, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30080643

RESUMO

The extent of residual contaminations of pesticides through drift, run-off and leaching is a potential threat to non-target plant communities. Arabidopsis thaliana responds to low doses of the herbicide atrazine, and of its degradation products, desethylatrazine and hydroxyatrazine, not only in the long term, but also under conditions of short-term exposure. In order to investigate underlying molecular mechanisms of low-dose responses and to decipher commonalities and specificities between different chemical treatments, parallel transcriptomic studies of the early effects of the atrazine-desethylatrazine-hydroxyatrazine chemical series were undertaken using whole-genome microarrays. All of the triazines under study produced coordinated and specific changes in gene expression. Hydroxyatrazine-responsive genes were mainly linked to root development, whereas atrazine and desethylatrazine mostly affected molecular signaling networks implicated in stress and hormone responses. Analysis of signaling-related genes, promoter sites and shared-function interaction networks highlighted the involvement of energy-, stress-, abscisic acid- and cytokinin-regulated processes, and emphasized the importance of cold-, heat- and drought-related signaling in the perception of low doses of triazines. These links between low-dose xenobiotic impacts and stress-hormone crosstalk pathways give novel insights into plant-pesticide interactions and plant-pollution interactions that are essential for toxicity evaluation in the context of environmental risk assessment.


Assuntos
Ácido Abscísico/metabolismo , Citocininas/metabolismo , Triazinas/farmacologia , Xenobióticos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Atrazina/farmacologia , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Estresse Fisiológico/efeitos dos fármacos
15.
Glob Chang Biol ; 24(12): 5573-5589, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30155993

RESUMO

Climate change reshapes the physiology and development of organisms through phenotypic plasticity, epigenetic modifications, and genetic adaptation. Under evolutionary pressures of the sessile lifestyle, plants possess efficient systems of phenotypic plasticity and acclimation to environmental conditions. Molecular analysis, especially through omics approaches, of these primary lines of environmental adjustment in the context of climate change has revealed the underlying biochemical and physiological mechanisms, thus characterizing the links between phenotypic plasticity and climate change responses. The efficiency of adaptive plasticity under climate change indeed depends on the realization of such biochemical and physiological mechanisms, but the importance of sensing and signaling mechanisms that can integrate perception of environmental cues and transduction into physiological responses is often overlooked. Recent progress opens the possibility of considering plant phenotypic plasticity and responses to climate change through the perspective of environmental sensing and signaling. This review aims to analyze present knowledge on plant sensing and signaling mechanisms and discuss how their structural and functional characteristics lead to resilience or hypersensitivity under conditions of climate change. Plant cells are endowed with arrays of environmental and stress sensors and with internal signals that act as molecular integrators of the multiple constraints of climate change, thus giving rise to potential mechanisms of climate change sensing. Moreover, mechanisms of stress-related information propagation lead to stress memory and acquired stress tolerance that could withstand different scenarios of modifications of stress frequency and intensity. However, optimal functioning of existing sensors, optimal integration of additive constraints and signals, or memory processes can be hampered by conflicting interferences between novel combinations and novel changes in intensity and duration of climate change-related factors. Analysis of these contrasted situations emphasizes the need for future research on the diversity and robustness of plant signaling mechanisms under climate change conditions.


Assuntos
Aclimatação , Mudança Climática , Fenômenos Fisiológicos Vegetais , Plantas/genética
16.
Trends Plant Sci ; 23(2): 95-99, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29287770

RESUMO

Ecological, signaling, metabolic, and chemical processes in plant-microorganism systems and in plant-derived material may link the use of chlorinated pesticides in the environment with plant chloromethane emission. This neglected factor should be taken into account to assess global planetary budgets of chloromethane and impacts on atmospheric ozone depletion.


Assuntos
Meio Ambiente , Hidrocarbonetos Clorados/metabolismo , Cloreto de Metila/metabolismo , Praguicidas/metabolismo , Plantas/metabolismo , Biodegradação Ambiental , Hidrocarbonetos Clorados/química , Praguicidas/química , Plantas/efeitos dos fármacos
17.
J Plant Physiol ; 212: 105-114, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28282526

RESUMO

Herbicides are pollutants of great concern due to environmental ubiquity resulting from extensive use in modern agriculture and persistence in soil and water. Studies at various spatial scales have also highlighted frequent occurrences of major herbicide breakdown products in the environment. Analysis of plant behavior toward such molecules and their metabolites under conditions of transient or persistent soil pollution is important for toxicity evaluation in the context of environmental risk assessment. In order to understand the mechanisms underlying the action of such environmental contaminants, the model plant Arabidopsis thaliana, which has been shown to be highly responsive to pesticides and other xenobiotics, was confronted with varying levels of the widely-used herbicide atrazine and of two of its metabolites, desethylatrazine and hydroxyatrazine, which are both frequently detected in water streams of agriculturally-intensive areas. After 24h of exposure to varying concentrations covering the range of triazine concentrations detected in the environment, root-level contaminations of atrazine, desethylatrazine and hydroxyatrazine were found to affect early growth and development in various dose-dependent and differential manners. Moreover, these differential effects of atrazine, desethylatrazine and hydroxyatrazine pointed to the involvement of distinct mechanisms directly affecting respiration and root development. The consequences of the identification of additional targets, in addition to the canonical photosystem II target, are discussed in relation with the ecotoxicological assessment of environmental xenobiotic contamination.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/crescimento & desenvolvimento , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Estresse Fisiológico/efeitos dos fármacos , Triazinas/toxicidade , Xenobióticos/toxicidade , Agricultura , Atrazina/toxicidade , Biomassa , Dióxido de Carbono/metabolismo , Clorofila , Ecossistema , Poluentes Ambientais/toxicidade , Herbicidas/química , Herbicidas/toxicidade , Modelos Biológicos , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Raízes de Plantas/metabolismo , Sementes/crescimento & desenvolvimento , Solo/química , Poluentes do Solo/análise , Poluição da Água
18.
Sci Total Environ ; 569-570: 1618-1628, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27318518

RESUMO

Herbicide impact is usually assessed as the result of a unilinear mode of action on a specific biochemical target with a typical dose-response dynamics. Recent developments in plant molecular signaling and crosstalk between nutritional, hormonal and environmental stress cues are however revealing a more complex picture of inclusive toxicity. Herbicides induce large-scale metabolic and gene-expression effects that go far beyond the expected consequences of unilinear herbicide-target-damage mechanisms. Moreover, groundbreaking studies have revealed that herbicide action and responses strongly interact with hormone signaling pathways, with numerous regulatory protein-kinases and -phosphatases, with metabolic and circadian clock regulators and with oxidative stress signaling pathways. These interactions are likely to result in mechanisms of adjustment that can determine the level of sensitivity or tolerance to a given herbicide or to a mixture of herbicides depending on the environmental and developmental status of the plant. Such regulations can be described as rheostatic and their importance is discussed in relation with herbicide use strategies, environmental risk assessment and global change assessment challenges.


Assuntos
Herbicidas/farmacologia , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Transdução de Sinais , Medição de Risco , Estresse Fisiológico
20.
Front Microbiol ; 6: 486, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052316

RESUMO

The phyllosphere, which lato sensu consists of the aerial parts of plants, and therefore primarily, of the set of photosynthetic leaves, is one of the most prevalent microbial habitats on earth. Phyllosphere microbiota are related to original and specific processes at the interface between plants, microorganisms and the atmosphere. Recent -omics studies have opened fascinating opportunities for characterizing the spatio-temporal structure of phyllosphere microbial communities in relation with structural, functional, and ecological properties of host plants, and with physico-chemical properties of the environment, such as climate dynamics and trace gas composition of the surrounding atmosphere. This review will analyze recent advances, especially those resulting from environmental genomics, and how this novel knowledge has revealed the extent of the ecosystemic impact of the phyllosphere at the interface between plants and atmosphere. Highlights • The phyllosphere is one of the most prevalent microbial habitats on earth. • Phyllosphere microbiota colonize extreme, stressful, and changing environments. • Plants, phyllosphere microbiota and the atmosphere present a dynamic continuum. • Phyllosphere microbiota interact with the dynamics of volatile organic compounds and atmospheric trace gasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...