Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 240(4): 1405-1420, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37705460

RESUMO

Atmospheric conditions are expected to become warmer and drier in the future, but little is known about how evaporative demand influences forest structure and function independently from soil moisture availability, and how fast-response variables (such as canopy water potential and stomatal conductance) may mediate longer-term changes in forest structure and function in response to climate change. We used two tropical rainforest sites with different temperatures and vapour pressure deficits (VPD), but nonlimiting soil water supply, to assess the impact of evaporative demand on ecophysiological function and forest structure. Common species between sites allowed us to test the extent to which species composition, relative abundance and intraspecific variability contributed to site-level differences. The highest VPD site had lower midday canopy water potentials, canopy conductance (gc ), annual transpiration, forest stature, and biomass, while the transpiration rate was less sensitive to changes in VPD; it also had different height-diameter allometry (accounting for 51% of the difference in biomass between sites) and higher plot-level wood density. Our findings suggest that increases in VPD, even in the absence of soil water limitation, influence fast-response variables, such as canopy water potentials and gc , potentially leading to longer-term changes in forest stature resulting in reductions in biomass.


Assuntos
Folhas de Planta , Solo , Solo/química , Folhas de Planta/fisiologia , Floresta Úmida , Pressão de Vapor , Água/fisiologia , Abastecimento de Água , Transpiração Vegetal/fisiologia , Árvores/fisiologia
2.
Plant Cell Environ ; 46(1): 185-198, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36230004

RESUMO

The continued functioning of tropical forests under climate change depends on their resilience to drought and heat. However, there is little understanding of how tropical forests will respond to combinations of these stresses, and no field studies to date have explicitly evaluated whether sustained drought alters sensitivity to temperature. We measured the temperature response of net photosynthesis, foliar respiration and the maximum quantum efficiency of photosystem II (Fv /Fm ) of eight hyper-dominant Amazonian tree species at the world's longest-running tropical forest drought experiment, to investigate the effect of drought on forest thermal sensitivity. Despite a 0.6°C-2°C increase in canopy air temperatures following long-term drought, no change in overall thermal sensitivity of net photosynthesis or respiration was observed. However, photosystem II tolerance to extreme-heat damage (T50 ) was reduced from 50.0 ± 0.3°C to 48.5 ± 0.3°C under drought. Our results suggest that long-term reductions in precipitation, as projected across much of Amazonia by climate models, are unlikely to greatly alter the response of tropical forests to rising mean temperatures but may increase the risk of leaf thermal damage during heatwaves.


Assuntos
Complexo de Proteína do Fotossistema II , Árvores
3.
New Phytol ; 233(4): 1667-1681, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34861052

RESUMO

Soil-leaf hydraulic conductance determines canopy-atmosphere coupling in vegetation models, but it is typically derived from ex-situ measurements of stem segments and soil samples. Using a novel approach, we derive robust in-situ estimates for whole-tree conductance (ktree ), 'functional' soil conductance (ksoil ), and 'system' conductance (ksystem , water table to canopy), at two climatically different tropical rainforest sites. Hydraulic 'functional rooting depth', determined for each tree using profiles of soil water potential (Ψsoil ) and sap flux data, enabled a robust determination of ktree and ksoil . ktree was compared across species, size classes, seasons, height above nearest drainage (HAND), two field sites, and to alternative representations of ktree ; ksoil was analysed with respect to variations in site, season and HAND. ktree was lower and changed seasonally at the site with higher vapour pressure deficit (VPD) and rainfall; ktree differed little across species but scaled with tree circumference; rsoil (1/ksoil ) ranged from 0 in the wet season to 10× less than rtree (1/ktree ) in the dry season. VPD and not rainfall may influence plot-level k; leaf water potentials and sap flux can be used to determine ktree , ksoil and ksystem ; Ψsoil profiles can provide mechanistic insights into ecosystem-level water fluxes.


Assuntos
Solo , Árvores , Ecossistema , Florestas , Folhas de Planta , Transpiração Vegetal , Floresta Úmida , Água
4.
R Soc Open Sci ; 8(2): 201458, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972856

RESUMO

A large portion of the terrestrial vegetation carbon stock is stored in the above-ground biomass (AGB) of tropical forests, but the exact amount remains uncertain, partly owing to the lack of measurements. To date, accessible peer-reviewed data are available for just 10 large tropical trees in the Amazon that have been harvested and directly measured entirely via weighing. Here, we harvested four large tropical rainforest trees (stem diameter: 0.6-1.2 m, height: 30-46 m, AGB: 3960-18 584 kg) in intact old-growth forest in East Amazonia, and measured above-ground green mass, moisture content and woody tissue density. We first present rare ecological insights provided by these data, including unsystematic intra-tree variations in density, with both height and radius. We also found the majority of AGB was usually found in the crown, but varied from 42 to 62%. We then compare non-destructive approaches for estimating the AGB of these trees, using both classical allometry and new lidar-based methods. Terrestrial lidar point clouds were collected pre-harvest, on which we fitted cylinders to model woody structure, enabling retrieval of volume-derived AGB. Estimates from this approach were more accurate than allometric counterparts (mean tree-scale relative error: 3% versus 15%), and error decreased when up-scaling to the cumulative AGB of the four trees (1% versus 15%). Furthermore, while allometric error increased fourfold with tree size over the diameter range, lidar error remained constant. This suggests error in these lidar-derived estimates is random and additive. Were these results transferable across forest scenes, terrestrial lidar methods would reduce uncertainty in stand-scale AGB estimates, and therefore advance our understanding of the role of tropical forests in the global carbon cycle.

5.
New Phytol ; 229(3): 1363-1374, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32981040

RESUMO

Plant traits are increasingly being used to improve prediction of plant function, including plant demography. However, the capability of plant traits to predict demographic rates remains uncertain, particularly in the context of trees experiencing a changing climate. Here we present data combining 17 plant traits associated with plant structure, metabolism and hydraulic status, with measurements of long-term mean, maximum and relative growth rates for 176 trees from the world's longest running tropical forest drought experiment. We demonstrate that plant traits can predict mean annual tree growth rates with moderate explanatory power. However, only combinations of traits associated more directly with plant functional processes, rather than more commonly employed traits like wood density or leaf mass per area, yield the power to predict growth. Critically, we observe a shift from growth being controlled by traits related to carbon cycling (assimilation and respiration) in well-watered trees, to traits relating to plant hydraulic stress in drought-stressed trees. We also demonstrate that even with a very comprehensive set of plant traits and growth data on large numbers of tropical trees, considerable uncertainty remains in directly interpreting the mechanisms through which traits influence performance in tropical forests.


Assuntos
Árvores , Clima Tropical , Mudança Climática , Secas , Florestas , Folhas de Planta
6.
Glob Chang Biol ; 26(6): 3569-3584, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32061003

RESUMO

The fate of tropical forests under future climate change is dependent on the capacity of their trees to adjust to drier conditions. The capacity of trees to withstand drought is likely to be determined by traits associated with their hydraulic systems. However, data on whether tropical trees can adjust hydraulic traits when experiencing drought remain rare. We measured plant hydraulic traits (e.g. hydraulic conductivity and embolism resistance) and plant hydraulic system status (e.g. leaf water potential, native embolism and safety margin) on >150 trees from 12 genera (36 species) and spanning a stem size range from 14 to 68 cm diameter at breast height at the world's only long-running tropical forest drought experiment. Hydraulic traits showed no adjustment following 15 years of experimentally imposed moisture deficit. This failure to adjust resulted in these drought-stressed trees experiencing significantly lower leaf water potentials, and higher, but variable, levels of native embolism in the branches. This result suggests that hydraulic damage caused by elevated levels of embolism is likely to be one of the key drivers of drought-induced mortality following long-term soil moisture deficit. We demonstrate that some hydraulic traits changed with tree size, however, the direction and magnitude of the change was controlled by taxonomic identity. Our results suggest that Amazonian trees, both small and large, have limited capacity to acclimate their hydraulic systems to future droughts, potentially making them more at risk of drought-induced mortality.


Assuntos
Secas , Árvores , Brasil , Folhas de Planta , Floresta Úmida , Água
8.
New Phytol ; 218(4): 1393-1405, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29397028

RESUMO

CO2 efflux from stems (CO2_stem ) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO2_stem in the droughted forest relative to a control forest. This was driven by increasing CO2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO2_stem , due to substantial uncertainty introduced by contrasting methods previously employed to scale CO2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO2_stem fluxes, stand-scale future estimates of changes in stem CO2 emissions remain highly uncertain.


Assuntos
Dióxido de Carbono/metabolismo , Secas , Florestas , Caules de Planta/metabolismo , Estresse Fisiológico , Árvores/anatomia & histologia , Clima Tropical , Respiração Celular , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...