Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(44): 15716-15729, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37889478

RESUMO

Droplets made of liquid perfluorocarbon undergo a phase transition and transform into microbubbles when triggered by ultrasound of intensity beyond a critical threshold; this mechanism is called acoustic droplet vaporization (ADV). It has been shown that if the intensity of the signal coming from high ultrasonic harmonics are sufficiently high, superharmonic focusing is the mechanism leading to ADV for large droplets (>3 µm) and high frequencies (>1.5 MHz). In such a scenario, ADV is initiated due to a nucleus occurring at a specific location inside the droplet volume. But the question on what induces ADV in the case of nanometer-sized droplets and/or at low ultrasonic frequencies (<1.5 MHz) still remains. We investigated ADV of perfluorohexane (PFH) nano- and microdroplets at a frequency of 1.1 MHz and at conditions where there is no superharmonic focusing. Three types of droplets produced by microfluidics were studied: plain PFH droplets, PFH droplets containing many nanometer-sized water droplets, and droplets made of a PFH corona encapsulating a single micron-sized water droplet. The probability to observe a vaporization event was measured as a function of acoustic pressure. As our experiments were performed on droplet suspensions containing a population of monodisperse droplets, we developed a statistical model to extrapolate, from our experimental curves, the ADV pressure thresholds in the case where only one droplet would be insonified. We observed that the value of ADV pressure threshold decreases as the radius of a plain PFH droplet increases. This value was further reduced when a PFH droplet encapsulates a micron-sized water droplet, while the encapsulation of many nanometer-sized water droplets did not modify the threshold. These results cannot be explained by a model of homogeneous nucleation. However, we developed a heterogeneous nucleation model, where the nucleus appears at the surface in contact with PFH, that successfully predicts our experimental ADV results.

2.
J Biomech Eng ; 138(4): 041003, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26833489

RESUMO

Shear waves that propagate in soft solids, such as the brain, are strongly nonlinear and can develop into shock waves in less than one wavelength. We hypothesize that these shear shock waves could be responsible for certain types of traumatic brain injuries (TBI) and that the spherical geometry of the skull bone could focus shear waves deep in the brain, generating diffuse axonal injuries. Theoretical models and numerical methods that describe nonlinear polarized shear waves in soft solids such as the brain are presented. They include the cubic nonlinearities that are characteristic of soft solids and the specific types of nonclassical attenuation and dispersion observed in soft tissues and the brain. The numerical methods are validated with analytical solutions, where possible, and with self-similar scaling laws where no known solutions exist. Initial conditions based on a human head X-ray microtomography (CT) were used to simulate focused shear shock waves in the brain. Three regimes are investigated with shock wave formation distances of 2.54 m, 0.018 m, and 0.0064 m. We demonstrate that under realistic loading scenarios, with nonlinear properties consistent with measurements in the brain, and when the shock wave propagation distance and focal distance coincide, nonlinear propagation can easily overcome attenuation to generate shear shocks deep inside the brain. Due to these effects, the accelerations in the focal are larger by a factor of 15 compared to acceleration at the skull surface. These results suggest that shock wave focusing could be responsible for diffuse axonal injuries.


Assuntos
Encéfalo , Modelos Biológicos , Dinâmica não Linear , Resistência ao Cisalhamento , Fenômenos Biomecânicos , Encéfalo/diagnóstico por imagem , Traumatismos Cranianos Fechados , Humanos , Modelos Lineares , Microtomografia por Raio-X
3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 64(1 Pt 2): 016602, 2001 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-11461423

RESUMO

Time-reversal invariance of nonlinear acoustic wave propagation is experimentally investigated. Reversibility is studied for propagation shorter or longer than shock formation distance. In the first case, time-reversal invariance holds and a sinusoid distorted by nonlinearities during forward propagation progressively recovers its initial shape after the time-reversal operation. In the second case, reversibility is broken locally at the shock front as a time-reversal operation transforms a stable compression shock into an unstable expansion shock. Achieving experimentally the time-reversal process with a time-reversal mirror made of reversible piezoelectric transducers for very broadband signals, would require transducers with huge bandwidths. To date, such transducers remain unavailable. In order to overcome this technical limitation, we restricted ourselves in this study to one-dimensional (1D) propagation, for which an experimental ersatz of a time-reversal mirror can be used. Indeed, in a 1D case, the time-reversal operation applied on a plane wave can be mimicked for an antisymmetric wave form by a reflection of the plane wave onto a pressure-release interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...