Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chembiochem ; 24(22): e202300361, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37681318

RESUMO

Traditional methods for the assembly of functionalised DNA structures, involving enzyme restriction and modification, present difficulties when working with small DNA fragments (<100 bp), in part due to a lack of control over enzymatic action during the DNA modification process. This limits the design flexibility and range of accessible DNA structures. Here, we show that these limitations can be overcome by introducing chemical modifications into the DNA that spatially restrict enzymatic activity. This approach, sterically controlled nuclease enhanced (SCoNE) DNA assembly, thereby circumvents the size limitations of conventional Gibson assembly (GA) and allows the preparation of well-defined, functionalised DNA structures with multiple probes for specific analytes, such as IL-6, procalcitonin (PCT), and a biotin reporter group. Notably, when using the same starting materials, conventional GA under typical conditions fails. We demonstrate successful analyte capture based on standard and modified sandwich ELISA and also show how the inclusion of biotin probes provides additional functionality for product isolation.


Assuntos
Biotina , DNA , DNA/química
2.
ACS Cent Sci ; 6(4): 525-534, 2020 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-32342002

RESUMO

Current methods for bioconjugation rely on the introduction of stable linkers that lack the required versatility to perform sequential functionalizations. However, sequential manipulations are an increasing requirement in chemical biology because they can underpin multiple analyses of the same sample to provide a wider understanding of cell behavior. Here, we present a new method to site-selectively write, remove, and rewrite chemical functionality to a biomolecule, DNA in this case. Our method combines the precision and robustness of methyltransferase-directed labeling with the reversibility of acyl hydrazones and the efficiency of click chemistry. Underpinning the method is a new S-adenosyl-l-methionine derivative to site-selectively label DNA with a bifunctional chemical handle containing an acyl hydrazone-linker and a terminal azide. Functional tags are conjugated via the azide and can be removed (i.e., untagged) when needed at the acyl hydrazone via exchange with hydroxyl amine. The formed hydrazide-labeled DNA is a versatile intermediate that can be either rewritten to reset the original chemical handle or covalently reacted with a permanent tag. This ability to write, tag, untag, and permanently tag DNA is exploited to sequentially introduce two fluorescent dyes on DNA. Finally, we demonstrate the potential of the method by developing a protocol to sort labeled DNA using magnetic beads, with subsequent amplification of the sorted DNA sample for further analysis. The presented method opens new avenues for site-selective bioconjugation and should underpin integrative approaches in chemical biology where sequential functionalizations of the same sample are required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...