Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 1398, 2018 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-29362472

RESUMO

Interaction of relativistic electron beams with high power lasers can both serve as a secondary light source and as a novel diagnostic tool for various beam parameters. For both applications, it is important to understand the dynamics of the inverse Compton scattering mechanism and the dependence of the scattered light's spectral properties on the interacting laser and electron beam parameters. Measurements are easily misinterpreted due to the complex interplay of the interaction parameters. Here we report the potential of inverse Compton scattering as an advanced diagnostic tool by investigating two of the most influential interaction parameters, namely the laser intensity and the electron beam emittance. Established scaling laws for the spectral bandwidth and redshift of the mean scattered photon energy are refined. This allows for a quantitatively well matching prediction of the spectral shape. Driving the interaction to a nonlinear regime, we spectrally resolve the rise of higher harmonic radiation with increasing laser intensity. Unprecedented agreement with 3D radiation simulations is found, showing the good control and characterization of the interaction. The findings advance the interpretation of inverse Compton scattering measurements into a diagnostic tool for electron beams from laser plasma acceleration.

2.
Nat Commun ; 8(1): 487, 2017 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-28887456

RESUMO

Laser-plasma wakefield accelerators have seen tremendous progress, now capable of producing quasi-monoenergetic electron beams in the GeV energy range with few-femtoseconds bunch duration. Scaling these accelerators to the nanocoulomb range would yield hundreds of kiloamperes peak current and stimulate the next generation of radiation sources covering high-field THz, high-brightness X-ray and γ-ray sources, compact free-electron lasers and laboratory-size beam-driven plasma accelerators. However, accelerators generating such currents operate in the beam loading regime where the accelerating field is strongly modified by the self-fields of the injected bunch, potentially deteriorating key beam parameters. Here we demonstrate that, if appropriately controlled, the beam loading effect can be employed to improve the accelerator's performance. Self-truncated ionization injection enables loading of unprecedented charges of ∼0.5 nC within a mono-energetic peak. As the energy balance is reached, we show that the accelerator operates at the theoretically predicted optimal loading condition and the final energy spread is minimized.Higher beam quality and stability are desired in laser-plasma accelerators for their applications in compact light sources. Here the authors demonstrate in laser plasma wakefield electron acceleration that the beam loading effect can be employed to improve beam quality by controlling the beam charge.

3.
Phys Rev Lett ; 111(11): 114803, 2013 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-24074095

RESUMO

Thomson backscattering of intense laser pulses from relativistic electrons not only allows for the generation of bright x-ray pulses but also for the investigation of the complex particle dynamics at the interaction point. For this purpose a complete spectral characterization of a Thomson source powered by a compact linear electron accelerator is performed with unprecedented angular and energy resolution. A rigorous statistical analysis comparing experimental data to 3D simulations enables, e.g., the extraction of the angular distribution of electrons with 1.5% accuracy and, in total, provides predictive capability for the future high brightness hard x-ray source PHOENIX (photon electron collider for narrow bandwidth intense x rays) and potential gamma-ray sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...