Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 14368, 2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257331

RESUMO

We reconstruct spectra of secondary X-rays from a tunable 250-350 MeV laser wakefield electron accelerator from single-shot X-ray depth-energy measurements in a compact (7.5 × 7.5 × 15 cm), modular X-ray calorimeter made of alternating layers of absorbing materials and imaging plates. X-rays range from few-keV betatron to few-MeV inverse Compton to > 100 MeV bremsstrahlung emission, and are characterized both individually and in mixtures. Geant4 simulations of energy deposition of single-energy X-rays in the stack generate an energy-vs-depth response matrix for a given stack configuration. An iterative reconstruction algorithm based on analytic models of betatron, inverse Compton and bremsstrahlung photon energy distributions then unfolds X-ray spectra, typically within a minute. We discuss uncertainties, limitations and extensions of both measurement and reconstruction methods.

2.
Nat Commun ; 12(1): 2895, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001874

RESUMO

Plasma wakefield accelerators are capable of sustaining gigavolt-per-centimeter accelerating fields, surpassing the electric breakdown threshold in state-of-the-art accelerator modules by 3-4 orders of magnitude. Beam-driven wakefields offer particularly attractive conditions for the generation and acceleration of high-quality beams. However, this scheme relies on kilometer-scale accelerators. Here, we report on the demonstration of a millimeter-scale plasma accelerator powered by laser-accelerated electron beams. We showcase the acceleration of electron beams to 128 MeV, consistent with simulations exhibiting accelerating gradients exceeding 100 GV m-1. This miniaturized accelerator is further explored by employing a controlled pair of drive and witness electron bunches, where a fraction of the driver energy is transferred to the accelerated witness through the plasma. Such a hybrid approach allows fundamental studies of beam-driven plasma accelerator concepts at widely accessible high-power laser facilities. It is anticipated to provide compact sources of energetic high-brightness electron beams for quality-demanding applications such as free-electron lasers.

3.
Phys Rev Lett ; 125(1): 014801, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678646

RESUMO

We report observations of coherent optical transition radiation interferometry (COTRI) patterns generated by microbunched ∼200-MeV electrons as they emerge from a laser-driven plasma accelerator. The divergence of the microbunched portion of electrons, deduced by comparison to a COTRI model, is ∼9× smaller than the ∼3 mrad ensemble beam divergence, while the radius of the microbunched beam, obtained from COTR images on the same shot, is <3 µm. The combined results show that the microbunched distribution has estimated transverse normalized emittance ∼0.4 mm mrad.

4.
Philos Trans A Math Phys Eng Sci ; 377(2151): 20180175, 2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31230579

RESUMO

We present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage are used as input beams of a new PWFA stage. In the PWFA stage, a new witness beam of largely increased quality can be produced and accelerated to higher energies. The feasibility and the potential of this concept is shown through exemplary particle-in-cell simulations. In addition, preliminary simulation results for a proof-of-concept experiment in Helmholtz-Zentrum Dresden-Rossendorf (Germany) are shown. This article is part of the Theo Murphy meeting issue 'Directions in particle beam-driven plasma wakefield acceleration'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...