Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Res ; 1864(1): 113-124, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27984090

RESUMO

Glioblastomas are the deadliest type of brain cancer and are frequently associated with poor prognosis and a high degree of recurrence despite removal by surgical resection and treatment by chemo- and radio-therapy. Photodynamic therapy (PDT) is a treatment well known to induce mainly necrotic and apoptotic cell death in solid tumors. 5-Aminolevulinic acid (5-ALA)-based PDT was recently shown to sensitize human glioblastoma cells (LN-18) to a RIP3 (Receptor Interacting Protein 3)-dependent cell death which is counter-acted by activation of autophagy. These promising results led us to investigate the pathways involved in cell death and survival mechanisms occurring in glioblastoma following PDT. In the present study, we describe a new TSC2 (Tuberous Sclerosis 2)-dependent survival pathway implicating MK2 (MAPKAPK2) kinase and 14-3-3 proteins which conducts to the activation of a pro-survival autophagy. Moreover, we characterized a new RIP3/TSC2 complex where RIP3 is suggested to promote cell death by targeting TSC2-dependent survival pathway. These results highlight (i) a new role of TSC2 to protect glioblastoma against PDT-induced cell death and (ii) TSC2 and 14-3-3 as new RIP3 partners.


Assuntos
Proteínas 14-3-3/genética , Ácido Aminolevulínico/farmacologia , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neuroglia/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas 14-3-3/antagonistas & inibidores , Proteínas 14-3-3/metabolismo , Ácido Aminolevulínico/metabolismo , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 7 Relacionada à Autofagia/antagonistas & inibidores , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Inativação Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Luz , Neuroglia/metabolismo , Neuroglia/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/metabolismo
2.
Autophagy ; 8(9): 1312-24, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22889744

RESUMO

Although reactive oxygen species (ROS) have been reported to evoke different autophagic pathways, how ROS or their secondary products modulate the selective clearance of oxidatively damaged organelles is less explored. To investigate the signaling role of ROS and the impact of their compartmentalization in autophagy pathways, we used murine fibrosarcoma L929 cells overexpressing different antioxidant enzymes targeted to the cytosol or mitochondria and subjected them to photodynamic (PD) stress with the endoplasmic reticulum (ER)-associated photosensitizer hypericin. We show that following apical ROS-mediated damage to the ER, predominantly cells overexpressing mitochondria-associated glutathione peroxidase 4 (GPX4) and manganese superoxide dismutase (SOD2) displayed attenuated kinetics of autophagosome formation and overall cell death, as detected by computerized time-lapse microscopy. Consistent with a primary ER photodamage, kinetics and colocalization studies revealed that photogenerated ROS induced an initial reticulophagy, followed by morphological changes in the mitochondrial network that preceded clearance of mitochondria by mitophagy. Overexpression of cytosolic and mitochondria-associated GPX4 retained the tubular mitochondrial network in response to PD stress and concomitantly blocked the progression toward mitophagy. Preventing the formation of phospholipid hydroperoxides and H(2)O(2) in the cytosol as well as in the mitochondria significantly reduced cardiolipin peroxidation and apoptosis. All together, these results show that in response to apical ER photodamage ROS propagate to mitochondria, which in turn amplify ROS production, thereby contributing to two antagonizing processes, mitophagy and apoptosis.


Assuntos
Autofagia/efeitos dos fármacos , Mitocôndrias/metabolismo , Organelas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Animais , Antracenos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Organelas/efeitos dos fármacos , Oxirredução/efeitos dos fármacos , Perileno/análogos & derivados , Perileno/farmacologia , Fatores de Tempo
3.
Lasers Surg Med ; 43(7): 557-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22057483

RESUMO

BACKGROUND AND OBJECTIVE: The receptor-interacting protein 3 (RIP3) has recently been outlined as a key necrosis mediator but is also thought to participate in the regulation of apoptosis. The aim of this study is to compare the cell death profile induced by 5-aminolevulic acid (5-ALA)-mediated photodynamic therapy (PDT) in the RIP3-deficient cell line U2OS and in U2OS cells in which the expression of RIP3 was restored. MATERIALS AND METHODS: RIP3-expressing U2OS cells (RIP3-U2OS) were obtained after transfection and antibiotic selection. Wild type and RIP3-U2OS cells were treated by 5-ALA-PDT. Overall cell viability was evaluated and different parameters characteristic of apoptosis, autophagy, and necrosis were studied. RESULTS: Surprisingly, the survival of RIP3-U2OS cells was higher compared to that of the wild type cells. In addition, RIP3-U2OS cell death was decreased by a zVAD-fmk pre-treatment. A higher cleavage of caspase-3, 7, 8, 9, and PARP was also detected in these cells, pointing out to the activation of caspase-dependent apoptosis. In parallel, a thrust of autophagy was clearly identified in the RIP3-U2OS cells. Conversely, RIP3-U2OS exhibited a lower level of necrosis than the wild types. Interestingly, necrostatin-1 efficiently decreased necrosis level in RIP3-U2OS but not in wild type cells. CONCLUSION: Expression of RIP3 in U2OS cells led to a better survival but also to a death profile change in response to PDT. The apoptotic and autophagic pathways were clearly up-regulated compared to the RIP3-deficient wild type cells. However, induction of necrosis was weaker in the RIP3-U2OS cells. In this context, autophagy is likely to play a protective role against PDT-induced cell death and to allow a better survival of RIP3-U2OS cells. This work also highlights the important role played by RIP3 in the apoptotic pathway, although the modalities are still widely unknown.


Assuntos
Ácido Aminolevulínico/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Ósseas/patologia , Osteossarcoma/patologia , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ácido Aminolevulínico/uso terapêutico , Western Blotting , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Necrose , Osteossarcoma/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico
4.
Photochem Photobiol Sci ; 10(12): 1868-78, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22033613

RESUMO

Glioblastoma constitute the most frequent and deadliest brain tumors of astrocytic origin. They are resistant to all current therapies and are associated with a high rate of recurrence. Glioblastoma were previously shown to respond to treatments by 5-aminolevulinic acid (5-ALA)-based photodynamic therapy (PDT) mainly by activating a necrotic type of cell death. The receptor-interacting protein 3 (RIP3) has recently been outlined as a key mediator of this caspase-independent form of programmed cell death. In the present study, we analyzed the necrotic mechanism induced by 5-ALA-PDT in human glioblastoma cells and explored the role of RIP3 in this context. Our results show that PDT-induced necrosis is dependent on RIP3, which forms aggregates and colocalizes with RIP1 following photosensitization. We demonstrate that PDT-mediated singlet oxygen production is the cause of RIP3-dependent necrotic pathway activation. We also prove that PDT induces the formation of a pro-necrotic complex containing RIP3 and RIP1 but lacking caspase-8 and FADD, two proteins usually part of the necrosome when TNF-α is used as a stimulus. Thus, we hypothesize that PDT might lead to the formation of a different necrosome whose components, besides RIP1 and RIP3, are still unknown. In most cases, glioblastoma are characterized by a constitutive activation of NF-κB. This factor is a key regulator of various processes, such as inflammation, immune response, cell growth or apoptosis. Its inhibition was shown to further sensitize glioblastoma cells to PDT-induced necrosis, however, no difference in RIP3 upshift or aggregation could be observed when NF-κB was inhibited.


Assuntos
Ácido Aminolevulínico/farmacologia , Necrose , Fármacos Fotossensibilizantes/farmacologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/uso terapêutico , Apoptose , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proteína de Domínio de Morte Associada a Fas/metabolismo , Glioblastoma/tratamento farmacológico , Humanos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Necrose/induzido quimicamente , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/uso terapêutico , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Oxigênio Singlete/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Biochem Pharmacol ; 81(5): 606-16, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-21182827

RESUMO

Glioblastoma constitute the most frequent and deadliest brain tumors of astrocytic origin. They are very resistant to all current therapies and are associated with a huge rate of recurrence. In most cases, this type of tumor is characterized by a constitutive activation of the nuclear factor-kappaB (NF-κB). This factor is known to be a key regulator of various physiological processes such as inflammation, immune response, cell growth or apoptosis. In the present study, we explored the role of NF-κB activation in the sensitivity of human glioblastoma cells to a treatment by 5-aminolevulinic acid (5-ALA)-based photodynamic therapy (PDT). 5-ALA is a physiological compound widely used in PDT as well as in tumor photodetection (PDD). Our results show that inhibition of NF-κB improves glioblastoma cell death in response to 5-ALA-PDT. We then studied the molecular mechanisms underlying the cell death induced by PDT combined or not with NF-κB inhibition. We found that apoptosis was induced by PDT but in an incomplete manner and that, unexpectedly, NF-κB inhibition reduced its level. Oppositely PDT mainly induces necrosis in glioblastoma cells and NF-κB is found to have anti-necrotic functions in this context. The autophagic flux was also enhanced as a result of 5-ALA-PDT and we demonstrate that stimulation of autophagy acts as a pro-survival mechanism confering protection against PDT-mediated necrosis. These data point out that 5-ALA-PDT has an interesting potential as a mean to treat glioblastoma and that inhibition of NF-κB renders glioblastoma cells more sensitive to the treatment.


Assuntos
Ácido Aminolevulínico/farmacologia , NF-kappa B/antagonistas & inibidores , Fármacos Fotossensibilizantes/farmacologia , Apoptose , Autofagia , Neoplasias Encefálicas , Glioblastoma , Humanos , NF-kappa B/metabolismo , Necrose , Fotoquimioterapia , Transdução de Sinais
6.
Methods Mol Biol ; 635: 79-95, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20552341

RESUMO

The nuclear factor-kappa B (NF-kappaB) is a multipotent factor involved in many cellular processes such as inflammation, immune response and embryonic development and it can be activated by a large number of stimuli. Consequently, this transcription factor plays a pivotal role in many natural processes but also in different pathologies. For several years, photodynamic therapy (PDT) has emerged as an attractive alternative approach for the treatment of different affections involving various forms of cancer and an increasing number of reports have highlighted the activation of the NF-kappaB following PDT treatment. Furthermore, it has been shown that the mechanism of activation of the NF-kappaB as well as its target genes depends on the nature of the photosensitizers and the cell type used. As this transcription factor is known to be a key regulator of the immune response but also controls cell survival and proliferation, it is important to assess its activation status and its impact on the target genes. In this review, we will present different techniques allowing identification of the activation status of this factor, from the degradation of its inhibitor in the cytoplasm to its ability to induce the expression of a reporter gene under the control of a target promoter. As a working model we will present results obtained from a 5-aminolevulinic acid-PDT treatment on cervix adenocarcinoma cells.


Assuntos
NF-kappa B/metabolismo , Fotoquimioterapia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos da radiação , Ácido Aminolevulínico/farmacologia , Ácido Aminolevulínico/uso terapêutico , Animais , Sequência de Bases , Western Blotting , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Citoplasma/efeitos dos fármacos , Citoplasma/metabolismo , Citoplasma/efeitos da radiação , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Genes Reporter/genética , Células HeLa , Humanos , Proteínas I-kappa B/metabolismo , Luciferases/genética , Inibidor de NF-kappaB alfa , NF-kappa B/isolamento & purificação , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Sinaptotagmina I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...