Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 46(11): 111, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37957450

RESUMO

Lift forces are widespread in hydrodynamics. These are typically observed for big and fast objects and are often associated with a combination of fluid inertia (i.e. large Reynolds numbers) and specific symmetry-breaking mechanisms. In contrast, the properties of viscosity-dominated (i.e. low Reynolds numbers) flows make it more difficult for such lift forces to emerge. However, the inclusion of boundary effects qualitatively changes this picture. Indeed, in the context of soft and biological matter, recent studies have revealed the emergence of novel lift forces generated by boundary softness, flow gradients and/or surface charges. The aim of the present review is to gather and analyse this corpus of literature, in order to identify and unify the questioning within the associated communities, and pave the way towards future research.

2.
Philos Trans A Math Phys Eng Sci ; 381(2244): 20220025, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774952

RESUMO

Collapse of lipidic ultrasound contrast agents under high-frequency compressive load has been historically interpreted by the vanishing of surface tension. By contrast, buckling of elastic shells is known to occur when costly compressible stress is released through bending. Through quasi-static compression experiments on lipidic shells, we analyse the buckling events in the framework of classical elastic buckling theory and deduce the mechanical characteristics of these shells. They are then compared with that obtained through acoustic characterization. This article is part of the theme issue 'Probing and dynamics of shock sensitive shells'.

3.
Biophys J ; 122(2): 360-373, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36476993

RESUMO

On-chip study of blood flow has emerged as a powerful tool to assess the contribution of each component of blood to its overall function. Blood has indeed many functions, from gas and nutrient transport to immune response and thermal regulation. Red blood cells play a central role therein, in particular through their specific mechanical properties, which directly influence pressure regulation, oxygen perfusion, or platelet and white cell segregation toward endothelial walls. As the bloom of in-vitro studies has led to the apparition of various storage and sample preparation protocols, we address the question of the robustness of the results involving cell mechanical behavior against this diversity. The effects of three conservation media (EDTA, citrate, and glucose-albumin-sodium-phosphate) and storage time on the red blood cell mechanical behavior are assessed under different flow conditions: cell deformability by ektacytometry, shape recovery of cells flowing out of a microfluidic constriction, and cell-flipping dynamics under shear flow. The impact of buffer solutions (phosphate-buffered saline and density-matched suspension using iodixanol/Optiprep) are also studied by investigating individual cell-flipping dynamics, relative viscosity of cell suspensions, and cell structuration under Poiseuille flow. Our results reveal that storing blood samples up to 7 days after withdrawal and suspending them in adequate density-matched buffer solutions has, in most experiments, a moderate effect on the overall mechanical response, with a possible rapid evolution in the first 3 days after sample collection.


Assuntos
Deformação Eritrocítica , Eritrócitos , Deformação Eritrocítica/fisiologia , Eritrócitos/fisiologia , Viscosidade Sanguínea , Viscosidade , Microfluídica
4.
J Acoust Soc Am ; 149(2): 1240, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33639825

RESUMO

We introduce a model that describes spherical oscillations of encapsulated microbubbles in an unbounded surrounding fluid. A Rayleigh-Plesset-like equation is derived by coupling the Navier-Stokes equation that describes fluid dynamics with the Navier equation that describes solid dynamics via the internal/external boundary conditions. While previous models were restricted to incompressible isotropic shells, the solid shell is modeled here as a compressible viscoelastic isotropic material and then generalized to an anisotropic material. The exact value of the resonance frequency is calculated analytically, and the damping constant is computed in the approximation of weak damping. A correction of the widely used Church model for incompressible shells is evidenced, and the effects of shell compressibility and anisotropy are discussed.

6.
Eur Phys J E Soft Matter ; 42(9): 129, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31571019

RESUMO

We investigate the relationship between pre-buckling and post-buckling states as a function of shell properties, within the deflation process of shells of an isotropic material. With an original and low-cost set-up that allows to measure simultaneously volume and pressure, elastic shells whose relative thicknesses span on a broad range are deflated until they buckle. We characterize the post-buckling state in the pressure-volume diagram, but also the relaxation toward this state. The main result is that before as well as after the buckling, the shells behave in a way compatible with predictions generated through thin shell assumption, and that this consistency persists for shells where the thickness reaches up to 0.3 the shell's midsurface radius.

7.
Microvasc Res ; 124: 30-36, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30831125

RESUMO

The lateral migration of red blood cells (RBCs) in confined channel flows is an important ingredient of microcirculatory hydrodynamics and is involved in the development of a cell free layer near vessel walls and influences the distribution of RBCs in networks. It is also relevant to a number of lab-on-chip applications. This migration is a consequence of their deformability and is due to the combined effects of hydrodynamic wall repulsion and the curvature of the fluid velocity profile. We performed microfluidic experiments with dilute suspensions of RBCs in which the trajectories and migration away from the channel wall are analyzed to extract the mean behavior, from which we propose a generic scaling law for the transverse migration velocity valid in a whole range of parameters relevant to microcirculatory and practical situations. Experiments with RBCs of different mechanical properties (separated by density gradient sedimentation or fixed with glutaraldehyde) show the influence of this parameter which can induce significant dispersion of the trajectories.


Assuntos
Eritrócitos/fisiologia , Hemorreologia , Velocidade do Fluxo Sanguíneo , Deformação Eritrocítica , Humanos , Dispositivos Lab-On-A-Chip , Microcirculação , Técnicas Analíticas Microfluídicas/instrumentação , Modelos Biológicos , Fatores de Tempo
8.
Phys Rev Lett ; 119(22): 224501, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29286796

RESUMO

Microswimmers, and among them aspirant microrobots, generally have to cope with flows where viscous forces are dominant, characterized by a low Reynolds number (Re). This implies constraints on the possible sequences of body motion, which have to be nonreciprocal. Furthermore, the presence of a strong drag limits the range of resulting velocities. Here, we propose a swimming mechanism which uses the buckling instability triggered by pressure waves to propel a spherical, hollow shell. With a macroscopic experimental model, we show that a net displacement is produced at all Re regimes. An optimal displacement caused by nontrivial history effects is reached at intermediate Re. We show that, due to the fast activation induced by the instability, this regime is reachable by microscopic shells. The rapid dynamics would also allow high-frequency excitation with standard traveling ultrasonic waves. Scale considerations predict a swimming velocity of order 1 cm/s for a remote-controlled microrobot, a suitable value for biological applications such as drug delivery.

9.
Soft Matter ; 12(39): 8235-8245, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27714335

RESUMO

We present experiments on RBCs that flow through micro-capillaries under physiological conditions. The strong flow-shape coupling of these deformable objects leads to a rich variety of cluster formation. We show that the RBC clusters form as a subtle imbrication between hydrodynamic interactions and adhesion forces because of plasma proteins, mimicked by the polymer dextran. Clusters form along the capillaries and macromolecule-induced adhesion contributes to their stability. However, at high yet physiological flow velocities, shear stresses overcome part of the adhesion forces, and cluster stabilization due to hydrodynamics becomes stronger. For the case of pure hydrodynamic interaction, cell-to-cell distances have a pronounced bimodal distribution. Our 2D-numerical simulations on vesicles capture the transition between adhesive and non-adhesive clusters at different flow velocities.


Assuntos
Eritrócitos/citologia , Hidrodinâmica , Humanos , Estresse Mecânico
10.
Microvasc Res ; 105: 40-6, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26744089

RESUMO

Partitioning of red blood cells (RBCs) at the level of bifurcations in the microcirculatory system affects many physiological functions yet it remains poorly understood. We address this problem by using T-shaped microfluidic bifurcations as a model. Our computer simulations and in vitro experiments reveal that the hematocrit (ϕ0) partition depends strongly on RBC deformability, as long as ϕ0<20% (within the normal range in microcirculation), and can even lead to complete deprivation of RBCs in a child branch. Furthermore, we discover a deviation from the Zweifach-Fung effect which states that the child branch with lower flow rate recruits less RBCs than the higher flow rate child branch. At small enough ϕ0, we get the inverse scenario, and the hematocrit in the lower flow rate child branch is even higher than in the parent vessel. We explain this result by an intricate up-stream RBC organization and we highlight the extreme dependence of RBC transport on geometrical and cell mechanical properties. These parameters can lead to unexpected behaviors with consequences on the microcirculatory function and oxygen delivery in healthy and pathological conditions.


Assuntos
Eritrócitos/metabolismo , Hematócrito , Hemoglobinas/metabolismo , Microcirculação , Técnicas Analíticas Microfluídicas , Microvasos/fisiologia , Modelos Anatômicos , Modelos Cardiovasculares , Biomarcadores/sangue , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Humanos , Microvasos/anatomia & histologia , Fluxo Sanguíneo Regional , Viscosidade
11.
Biomed Opt Express ; 5(5): 1554-68, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24877015

RESUMO

We investigate the dynamics of a vesicle suspension under shear flow between plates using DHM with a spatially reduced coherent source. Holograms are grabbed at a frequency of 24 frames/sec. The distribution of the vesicle suspension is obtained after numerical processing of the digital holograms sequence resulting in a 4D distribution. Obtaining this distribution is not straightforward and requires special processing to automate the analysis. We present an original method that fully automates the analysis and provides distributions that are further analyzed to extract physical properties of the fluid. Details of the numerical implementation, as well as sample experimental results are presented.

12.
Phys Rev Lett ; 110(10): 108101, 2013 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-23521300

RESUMO

The distribution of red blood cells (RBCs) in a confined channel flow is inhomogeneous and shows a marked depletion near the walls due to a competition between migration away from the walls and shear-induced diffusion resulting from interactions between particles. We investigated the lift of RBCs in a shear flow near a wall and measured a significant lift velocity despite the tumbling motion of cells. We also provide values for the collective and anisotropic shear-induced diffusion of a cloud of RBCs, both in the direction of shear and in the direction of vorticity. A generic down-gradient subdiffusion characterized by an exponent 1/3 is highlighted.


Assuntos
Eritrócitos/química , Eritrócitos/citologia , Modelos Biológicos , Difusão , Humanos , Técnicas Analíticas Microfluídicas/métodos , Resistência ao Cisalhamento , Suspensões/química
13.
Phys Rev Lett ; 108(17): 178106, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22680911

RESUMO

Soft bodies flowing in a channel often exhibit parachutelike shapes usually attributed to an increase of hydrodynamic constraint (viscous stress and/or confinement). We show that the presence of a fluid membrane leads to the reverse phenomenon and build a phase diagram of shapes-which are classified as bullet, croissant, and parachute-in channels of varying aspect ratio. Unexpectedly, shapes are relatively wider in the narrowest direction of the channel. We highlight the role of flow patterns on the membrane in this response to the asymmetry of stress distribution.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 81(1 Pt 1): 013101; discussion 013102, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20365419

RESUMO

Sengupta [Phys. Rev. E 61, 1072 (2000)] presented an elegant and simple finite-size scaling method for the calculation of elastic constants and their corresponding correlation lengths, which is suitable for many finite discrete systems considered through simulations or experiments. We take into account a mathematical finite-size effect that was neglected by the authors in order to propose a more accurate method. Consequences on the authors' results are also discussed.

15.
Appl Opt ; 47(29): 5305-14, 2008 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-18846168

RESUMO

We investigate the use of a digital holographic microscope working with partially coherent spatial illumination to study concentration profiles inside confined deformable bodies flowing in microchannels. The studied phenomenon is rapidly changing in time and requires the recording of the complete holographic information for every frame. For this purpose, we implemented one of the classical methods of off-axis digital holography: the Fourier method. Digital holography allows one to numerically investigate a volume by refocusing the different planes of depth, allowing one to locate the objects under investigation in three dimensions. Furthermore, the phase is directly related to the refractive index, thus to the concentration inside the body. Based on simple symmetry assumptions, we present an original method for determining the concentration profiles inside deformable objects in microconfined flows. Details of the optical and numerical implementation, as well as exemplative experimental results are presented.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(3 Pt 1): 031112, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16605505

RESUMO

The single file diffusion in a circular channel of millimetric charged balls is studied. The evolution in time of the mean square displacement is shown to be subdiffusive, but slower than the powerlike t1/2 behavior observed in circular colloidal systems or predicted in one-dimensional infinite systems.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 71(4 Pt 2): 046105, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15903724

RESUMO

The influence of local order on the disordering scenario of small Wigner islands is discussed. A first disordering step is put in evidence by the time correlation functions and is linked to individual excitations resulting in configuration transitions, which are very sensitive to the local symmetries. This is followed by two other transitions, corresponding to orthoradial and radial diffusion, for which both individual and collective excitations play a significant role. Finally, we show that, contrary to large systems, the focus that is commonly made on collective excitations for such small systems through the Lindemann criterion has to be made carefully in order to clearly identify the relative contributions in the whole disordering process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...