Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant J ; 83(6): 952-61, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26212862

RESUMO

Long days repeatedly enhance the expression of the FLOWERING LOCUS T (FT) gene during the evening and early night. This signal induces flowering despite low FT expression the rest of the day. To investigate whether this temporal behaviour transmits information, plants of Arabidopsis thaliana were exposed to different day-night cycles, including combinations that induced FT expression out of normal hours. Flowering time best correlated with the integral of FT expression over several days, corrected for a higher evening and early night sensitivity to FT. We generated a system to induce FT expression in a leaf removed 8-12 h later. The expression of flowering genes in the apex and flowering required cycles of induction repeated over several days. Evening and early night FT induction was the most effective. The temporal pattern of FT expression encodes information that discriminates long days from other inputs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/genética , Flores/genética , Meristema/genética , Fotoperíodo , Plantas Geneticamente Modificadas
2.
PLoS Genet ; 11(2): e1004975, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25693187

RESUMO

DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes.


Assuntos
Arabidopsis/genética , DNA Polimerase III/genética , Replicação do DNA/genética , Epigênese Genética , Flores/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Histonas/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Domínio MADS , Folhas de Planta/genética , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA