Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 8406, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38114489

RESUMO

Three-dimensional (3D) organoid cultures are flexible systems to interrogate cellular growth, morphology, multicellular spatial architecture, and cellular interactions in response to treatment. However, computational methods for analysis of 3D organoids with sufficiently high-throughput and cellular resolution are needed. Here we report Cellos, an accurate, high-throughput pipeline for 3D organoid segmentation using classical algorithms and nuclear segmentation using a trained Stardist-3D convolutional neural network. To evaluate Cellos, we analyze ~100,000 organoids with ~2.35 million cells from multiple treatment experiments. Cellos segments dye-stained or fluorescently-labeled nuclei and accurately distinguishes distinct labeled cell populations within organoids. Cellos can recapitulate traditional luminescence-based drug response of cells with complex drug sensitivities, while also quantifying changes in organoid and nuclear morphologies caused by treatment as well as cell-cell spatial relationships that reflect ecological affinity. Cellos provides powerful tools to perform high-throughput analysis for pharmacological testing and biological investigation of organoids based on 3D imaging.


Assuntos
Neoplasias , Humanos , Organoides , Proliferação de Células , Redes Neurais de Computação
4.
Nat Cell Biol ; 24(8): 1306-1318, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35864314

RESUMO

Endometriosis is characterized by the growth of endometrial-like tissue outside the uterus. It affects many women during their reproductive age, causing years of pelvic pain and potential infertility. Its pathophysiology remains largely unknown, which limits early diagnosis and treatment. We characterized peritoneal and ovarian lesions at single-cell transcriptome resolution and compared them to matched eutopic endometrium, unaffected endometrium and organoids derived from these tissues, generating data on over 122,000 cells across 14 individuals. We spatially localized many of the cell types using imaging mass cytometry. We identify a perivascular mural cell specific to the peritoneal lesions, with dual roles in angiogenesis promotion and immune cell trafficking. We define an immunotolerant peritoneal niche, fundamental differences in eutopic endometrium and between lesion microenvironments and an unreported progenitor-like epithelial cell subpopulation. Altogether, this study provides a holistic view of the endometriosis microenvironment that represents a comprehensive cell atlas of the disease in individuals undergoing hormonal treatment, providing essential information for future therapeutics and diagnostics.


Assuntos
Coristoma , Endometriose , Cistos Ovarianos , Neoplasias Ovarianas , Coristoma/complicações , Coristoma/genética , Coristoma/metabolismo , Endometriose/genética , Endometriose/metabolismo , Endométrio/metabolismo , Feminino , Humanos , Cistos Ovarianos/complicações , Cistos Ovarianos/metabolismo , Cistos Ovarianos/patologia , Neoplasias Ovarianas/patologia , Análise de Célula Única , Microambiente Tumoral
5.
Nat Genet ; 53(10): 1456-1468, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34594038

RESUMO

Glioma intratumoral heterogeneity enables adaptation to challenging microenvironments and contributes to therapeutic resistance. We integrated 914 single-cell DNA methylomes, 55,284 single-cell transcriptomes and bulk multi-omic profiles across 11 adult IDH mutant or IDH wild-type gliomas to delineate sources of intratumoral heterogeneity. We showed that local DNA methylation disorder is associated with cell-cell DNA methylation differences, is elevated in more aggressive tumors, links with transcriptional disruption and is altered during the environmental stress response. Glioma cells under in vitro hypoxic and irradiation stress increased local DNA methylation disorder and shifted cell states. We identified a positive association between genetic and epigenetic instability that was supported in bulk longitudinally collected DNA methylation data. Increased DNA methylation disorder associated with accelerated disease progression and recurrently selected DNA methylation changes were enriched for environmental stress response pathways. Our work identified an epigenetically facilitated adaptive stress response process and highlights the importance of epigenetic heterogeneity in shaping therapeutic outcomes.


Assuntos
Neoplasias Encefálicas/genética , Plasticidade Celular/genética , Epigênese Genética , Glioma/genética , Análise de Célula Única , Estresse Fisiológico/genética , Evolução Clonal , Variações do Número de Cópias de DNA/genética , Metilação de DNA/genética , Regulação Neoplásica da Expressão Gênica , Heterogeneidade Genética , Genoma Humano , Humanos , Mutação/genética , Filogenia , Regiões Promotoras Genéticas/genética , Microambiente Tumoral/genética
6.
Oncoimmunology ; 9(1): 1744897, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32363111

RESUMO

Patients with locally advanced and metastatic urothelial carcinoma have a low survival rate (median 15.7 months, 13.1-17.8), with only a 23% response rate to monotherapy treatment with anti-PDL1 checkpoint immunotherapy. To identify new therapeutic targets, we profiled the immune regulatory signatures during murine cancer development using the BBN carcinogen and identified an increase in the expression of the T cell inhibitory protein B7-H4 (VTCN1, B7S1, B7X). B7-H4 expression temporally correlated with decreased lymphocyte infiltration. While the increase in B7-H4 expression within the bladder by CD11b+ monocytes is shared with human cancers, B7-H4 expression has not been previously identified in other murine cancer models. Higher expression of B7-H4 was associated with worse survival in muscle-invasive bladder cancer in humans, and increased B7-H4 expression was identified in luminal and luminal-papillary subtypes of bladder cancer. Evaluation of B7-H4 by single-cell RNA-Seq and immune mass cytometry of human bladder tumors found that B7-H4 is expressed in both the epithelium of urothelial carcinoma and CD68+ macrophages within the tumor. To investigate the function of B7-H4, treatment of human monocyte and T cell co-cultures with a B7-H4 blocking antibody resulted in enhanced IFN-γ secretion by CD4+ and CD8+ T cells. Additionally, anti-B7-H4 antibody treatment of BBN-carcinogen bladder cancers resulted in decreased tumor size, increased CD8+ T cell infiltration within the bladder, and a complimentary decrease in tumor-infiltrating T regulatory cells (Tregs). Furthermore, treatment with a combination of anti-PD-1 and anti-B7-H4 antibodies resulted in a significant reduction in tumor stage, a reduction in tumor size, and an increased level of tumor necrosis. These findings suggest that antibodies targeting B7-H4 may be a viable strategy for bladder cancers unresponsive to PD-1 checkpoint inhibitors.


Assuntos
Carcinoma de Células de Transição , Neoplasias da Bexiga Urinária , Animais , Linfócitos T CD8-Positivos , Humanos , Ativação Linfocitária , Camundongos , Linfócitos T Reguladores , Neoplasias da Bexiga Urinária/tratamento farmacológico
7.
Cancer Discov ; 9(8): 1102-1123, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31197017

RESUMO

Cancer-associated fibroblasts (CAF) are major players in the progression and drug resistance of pancreatic ductal adenocarcinoma (PDAC). CAFs constitute a diverse cell population consisting of several recently described subtypes, although the extent of CAF heterogeneity has remained undefined. Here we use single-cell RNA sequencing to thoroughly characterize the neoplastic and tumor microenvironment content of human and mouse PDAC tumors. We corroborate the presence of myofibroblastic CAFs and inflammatory CAFs and define their unique gene signatures in vivo. Moreover, we describe a new population of CAFs that express MHC class II and CD74, but do not express classic costimulatory molecules. We term this cell population "antigen-presenting CAFs" and find that they activate CD4+ T cells in an antigen-specific fashion in a model system, confirming their putative immune-modulatory capacity. Our cross-species analysis paves the way for investigating distinct functions of CAF subtypes in PDAC immunity and progression. SIGNIFICANCE: Appreciating the full spectrum of fibroblast heterogeneity in pancreatic ductal adenocarcinoma is crucial to developing therapies that specifically target tumor-promoting CAFs. This work identifies MHC class II-expressing CAFs with a capacity to present antigens to CD4+ T cells, and potentially to modulate the immune response in pancreatic tumors.See related commentary by Belle and DeNardo, p. 1001.This article is highlighted in the In This Issue feature, p. 983.


Assuntos
Apresentação de Antígeno/imunologia , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/etiologia , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/etiologia , Neoplasias Pancreáticas/metabolismo , Animais , Fibroblastos Associados a Câncer/patologia , Carcinoma Ductal Pancreático/patologia , Imunofluorescência , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Camundongos , Modelos Biológicos , Neoplasias Pancreáticas/patologia , Análise de Célula Única , Microambiente Tumoral/imunologia
8.
Clin Chem ; 65(2): 272-281, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30523199

RESUMO

BACKGROUND: The comeasurement of both genomic and transcriptomic signatures in single cells is of fundamental importance to accurately assess how the genetic information correlates with the transcriptomic phenotype. However, existing technologies have low throughput and laborious work flows. METHODS: We developed a new method for concurrent sequencing of the transcriptome and targeted genomic regions (CORTAD-seq) within the same single cell on an automated microfluidic platform. The method was compatible with the downstream library preparation, allowing easy integration into existing next-generation sequencing work flows. We incorporated a single-cell bioinformatics pipeline for transcriptome and mutation analysis. RESULTS: As proof of principle, we applied CORTAD-seq to lung cancer cell lines to dissect the cellular consequences of mutations that result in resistance to targeted therapy. We obtained a mean detection of 6000 expressed genes and an exonic rate of 50%. The targeted DNA-sequencing data achieved a 97.8% detection rate for mutations and allowed for the identification of copy number variations and haplotype construction. We detected expression signatures of tyrosine kinase inhibitor (TKI) resistance, epidermal growth factor receptor (EGFR) amplification, and expansion of the T790M mutation among resistant cells. We also identified characteristics for TKI resistance that were independent of EGFR T790M, indicating that other alterations are required for resistance in this context. CONCLUSIONS: CORTAD-seq allows assessment of the interconnection between genetic and transcriptomic changes in single cells. It is operated on an automated, commercially available single-cell isolation platform, making its implementation straightforward.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA/química , Análise de Sequência de DNA/métodos , Automação , Linhagem Celular Tumoral , Variações do Número de Cópias de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Biblioteca Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Microfluídica , Inibidores de Proteínas Quinases/uso terapêutico , RNA/metabolismo , Análise de Célula Única , Transcriptoma
9.
Nat Genet ; 50(12): 1754, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30420650

RESUMO

In the version of the article published, the author list is not accurate. Igor Cima and Min-Han Tan should have been authors, appearing after Mark Wong in the author list, while Paul Jongjoon Choi should not have been listed as an author. Igor Cima and Min-Han Tan both have the affiliation Institute of Bioengineering and Nanotechnology, Singapore, Singapore, and their contributions should have been noted in the Author Contributions section as "I.C. preprocessed Primary Cell Atlas data with inputs from M.-H.T." The following description of the contribution of Paul Jongjoon Choi should not have appeared: "P.J.C. supported the smFISH experiments." In the 'RCA: global panel' section of the Online Methods, the following sentence should have appeared as the second sentence, "An expression atlas of human primary cells (the Primary Cell Atlas) was preprocessed similarly to in ref. 55," with new reference 55 (Cima, I. et al. Tumor-derived circulating endothelial cell clusters in colorectal cancer. Science Transl. Med. 8, 345ra89, 2016).

10.
Nat Genet ; 49(5): 708-718, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28319088

RESUMO

Intratumoral heterogeneity is a major obstacle to cancer treatment and a significant confounding factor in bulk-tumor profiling. We performed an unbiased analysis of transcriptional heterogeneity in colorectal tumors and their microenvironments using single-cell RNA-seq from 11 primary colorectal tumors and matched normal mucosa. To robustly cluster single-cell transcriptomes, we developed reference component analysis (RCA), an algorithm that substantially improves clustering accuracy. Using RCA, we identified two distinct subtypes of cancer-associated fibroblasts (CAFs). Additionally, epithelial-mesenchymal transition (EMT)-related genes were found to be upregulated only in the CAF subpopulation of tumor samples. Notably, colorectal tumors previously assigned to a single subtype on the basis of bulk transcriptomics could be divided into subgroups with divergent survival probability by using single-cell signatures, thus underscoring the prognostic value of our approach. Overall, our results demonstrate that unbiased single-cell RNA-seq profiling of tumor and matched normal samples provides a unique opportunity to characterize aberrant cell states within a tumor.


Assuntos
Neoplasias Colorretais/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Análise de Célula Única/métodos , Transcriptoma , Células A549 , Algoritmos , Linhagem Celular , Linhagem Celular Tumoral , Análise por Conglomerados , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Fibroblastos/metabolismo , Heterogeneidade Genética , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Células K562 , Análise de Componente Principal , Prognóstico , Análise de Sequência de RNA/métodos , Análise de Sobrevida
11.
Nat Methods ; 13(10): 833-6, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27525975

RESUMO

Sample heterogeneity often masks DNA methylation signatures in subpopulations of cells. Here, we present a method to genotype single cells while simultaneously interrogating gene expression and DNA methylation at multiple loci. We used this targeted multimodal approach, implemented on an automated, high-throughput microfluidic platform, to assess primary lung adenocarcinomas and human fibroblasts undergoing reprogramming by profiling epigenetic variation among cell types identified through genotyping and transcriptional analysis.


Assuntos
Epigênese Genética/ética , Heterogeneidade Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de DNA/métodos , Análise de Célula Única/métodos , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Reprogramação Celular/genética , Impressões Digitais de DNA , Metilação de DNA/genética , Fibroblastos , Marcadores Genéticos , Humanos , Neoplasias Pulmonares/genética , Procedimentos Analíticos em Microchip/métodos
12.
Exp Cell Res ; 318(19): 2446-59, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22884477

RESUMO

Understanding the molecular programs of the generation of human dopaminergic neurons (DAn) from their ventral mesencephalic (VM) precursors is of key importance for basic studies, progress in cell therapy, drug screening and pharmacology in the context of Parkinson's disease. The nature of human DAn precursors in vitro is poorly understood, their properties unstable, and their availability highly limited. Here we present positive evidence that human VM precursors retaining their genuine properties and long-term capacity to generate A9 type Substantia nigra human DAn (hVM1 model cell line) can be propagated in culture. During a one month differentiation, these cells activate all key genes needed to progress from pro-neural and pro-dopaminergic precursors to mature and functional DAn. For the first time, we demonstrate that gene cascades are correctly activated during differentiation, resulting in the generation of mature DAn. These DAn have morphological and functional properties undistinguishable from those generated by VM primary neuronal cultures. In addition, we have found that the forced expression of Bcl-X(L) induces an increase in the expression of key developmental genes (MSX1, NGN2), maintenance of PITX3 expression temporal profile, and also enhances genes involved in DAn long-term function, maintenance and survival (EN1, LMX1B, NURR1 and PITX3). As a result, Bcl-X(L) anticipates and enhances DAn generation.


Assuntos
Diferenciação Celular/genética , Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Mesencéfalo/metabolismo , Proteína bcl-X/genética , Proteína bcl-X/metabolismo , Linhagem Celular , Dopamina/genética , Dopamina/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Mesencéfalo/citologia , Prosencéfalo/metabolismo , Substância Negra/citologia , Substância Negra/crescimento & desenvolvimento , Substância Negra/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Vitam Horm ; 87: 175-205, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22127243

RESUMO

Understanding the developmental mechanisms governing dopaminergic neuron generation and maintenance is crucial for the development of neuronal replacement therapeutic procedures, like in Parkinson's disease (PD), but also for research aimed at drug screening and pharmacology. In the present chapter, we review the present situation using stem cells of different origins (pluripotent and multipotent) and summarize current manipulations of stem cells for the enhancement of dopaminergic neuron generation, focusing on the actions of Bcl-X(L). Bcl-X(L) not only enhances dopaminergic neuron survival but also augments the expression of key developmental and maintenance genes, and, through the lengthening of the cell cycle early during differentiation, regulates cell fate decisions, producing a net enhancement of neurogenesis. The relevance of these findings is discussed in the context of basic neurogenesis and also for the development of efficient cell therapy in PD.


Assuntos
Neurônios Dopaminérgicos/citologia , Células-Tronco Neurais/citologia , Neurogênese , Proteína bcl-X/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Sobrevivência Celular , Neurônios Dopaminérgicos/metabolismo , Células-Tronco Fetais/citologia , Células-Tronco Fetais/metabolismo , Humanos , Células-Tronco Neurais/metabolismo
14.
J Biol Chem ; 285(13): 9881-9897, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20106970

RESUMO

Human neural stem cells derived from the ventral mesencephalon (VM) are powerful research tools and candidates for cell therapies in Parkinson disease. Previous studies with VM dopaminergic neuron (DAn) precursors indicated poor growth potential and unstable phenotypical properties. Using the model cell line hVM1 (human ventral mesencephalic neural stem cell line 1; a new human fetal VM stem cell line), we have found that Bcl-X(L) enhances the generation of DAn from VM human neural stem cells. Mechanistically, Bcl-X(L) not only exerts the expected antiapoptotic effect but also induces proneural (NGN2 and NEUROD1) and dopamine-related transcription factors, resulting in a high yield of DAn with the correct phenotype of substantia nigra pars compacta (SNpc). The expression of key genes directly involved in VM/SNpc dopaminergic patterning, differentiation, and maturation (EN1, LMX1B, PITX3, NURR1, VMAT2, GIRK2, and dopamine transporter) is thus enhanced by Bcl-X(L). These effects on neurogenesis occur in parallel to a decrease in glia generation. These in vitro Bcl-X(L) effects are paralleled in vivo, after transplantation in hemiparkinsonian rats, where hVM1-Bcl-X(L) cells survive, integrate, and differentiate into DAn, alleviating behavioral motor asymmetry. Bcl-X(L) then allows for human fetal VM stem cells to stably generate mature SNpc DAn both in vitro and in vivo and is thus proposed as a helpful factor for the development of cell therapies for neurodegenerative conditions, Parkinson disease in particular.


Assuntos
Dopamina/metabolismo , Neurônios/metabolismo , Células-Tronco/citologia , Proteína bcl-X/metabolismo , Animais , Apoptose , Comportamento Animal , Diferenciação Celular , Linhagem Celular , Modelos Animais de Doenças , Feminino , Humanos , Técnicas In Vitro , Potenciais da Membrana , Doença de Parkinson , Fenótipo , Ratos , Ratos Sprague-Dawley , Substância Negra/metabolismo
15.
Exp Cell Res ; 315(11): 1860-74, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19327351

RESUMO

Neural stem cells (NSCs) are powerful research tools for the design and discovery of new approaches to cell therapy in neurodegenerative diseases like Parkinson's disease. Several epigenetic and genetic strategies have been tested for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new stable cell line of human neural stem cells derived from ventral mesencephalon (hVM1) based on v-myc immortalization. The cells expressed neural stem cell and radial glia markers like nestin, vimentin and 3CB2 under proliferation conditions. After withdrawal of growth factors, proliferation and expression of v-myc were dramatically reduced and the cells differentiated into astrocytes, oligodendrocytes and neurons. hVM1 cells yield a large number of dopaminergic neurons (about 12% of total cells are TH+) after differentiation, which also produce dopamine. In addition to proneural genes (NGN2, MASH1), differentiated cells show expression of several genuine mesencephalic dopaminergic markers such as: LMX1A, LMX1B, GIRK2, ADH2, NURR1, PITX3, VMAT2 and DAT, indicating that they retain their regional identity. Our data indicate that this cell line and its clonal derivatives may constitute good candidates for the study of development and physiology of human dopaminergic neurons in vitro, and to develop tools for Parkinson's disease cell replacement preclinical research and drug testing.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Astrócitos/citologia , Astrócitos/metabolismo , Técnicas de Cultura de Células/métodos , Ciclo Celular , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Células Clonais/citologia , Células Clonais/metabolismo , Dopamina/metabolismo , Epigênese Genética , Expressão Gênica , Genes myc , Humanos , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...