Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Parkinsons Dis ; 9(1): 14, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36732520

RESUMO

Misfolded and aggregated α-synuclein is a neuropathological hallmark of Parkinson's disease (PD). Thus, α-synuclein aggregates are regarded as a biomarker for the development of diagnostic assays. Quantification of α-synuclein aggregates in body fluids is challenging, and requires highly sensitive and specific assays. Recent studies suggest that α-synuclein aggregates may be shed into stool. We used surface-based fluorescence intensity distribution analysis (sFIDA) to detect and quantify single particles of α-synuclein aggregates in stool of 94 PD patients, 72 isolated rapid eye movement sleep behavior disorder (iRBD) patients, and 51 healthy controls. We measured significantly elevated concentrations of α-synuclein aggregates in stool of iRBD patients versus those of controls (p = 0.024) or PD patients (p < 0.001). Our results show that α-synuclein aggregates are excreted in stool and can be measured using the sFIDA assay, which could support the diagnosis of prodromal synucleinopathies.

2.
NPJ Parkinsons Dis ; 8(1): 68, 2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35655068

RESUMO

The pathological hallmark of neurodegenerative diseases is the formation of toxic oligomers by proteins such as alpha-synuclein (aSyn) or microtubule-associated protein tau (Tau). Consequently, such oligomers are promising biomarker candidates for diagnostics as well as drug development. However, measuring oligomers and other aggregates in human biofluids is still challenging as extreme sensitivity and specificity are required. We previously developed surface-based fluorescence intensity distribution analysis (sFIDA) featuring single-particle sensitivity and absolute specificity for aggregates. In this work, we measured aSyn and Tau aggregate concentrations of 237 cerebrospinal fluid (CSF) samples from five cohorts: Parkinson's disease (PD), dementia with Lewy bodies (DLB), Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and a neurologically-normal control group. aSyn aggregate concentration discriminates PD and DLB patients from normal controls (sensitivity 73%, specificity 65%, area under the receiver operating curve (AUC) 0.68). Tau aggregates were significantly elevated in PSP patients compared to all other groups (sensitivity 87%, specificity 70%, AUC 0.76). Further, we found a tight correlation between aSyn and Tau aggregate titers among all patient cohorts (Pearson coefficient of correlation r = 0.81). Our results demonstrate that aSyn and Tau aggregate concentrations measured by sFIDA differentiate neurodegenerative disease diagnostic groups. Moreover, sFIDA-based Tau aggregate measurements might be particularly useful in distinguishing PSP from other parkinsonisms. Finally, our findings suggest that sFIDA can improve pre-clinical and clinical studies by identifying those individuals that will most likely respond to compounds designed to eliminate specific oligomers or to prevent their formation.

3.
Sci Rep ; 10(1): 10938, 2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32616825

RESUMO

Termination of the G-protein-coupled receptor signaling involves phosphorylation of its C-terminus and subsequent binding of the regulatory protein arrestin. In the visual system, arrestin-1 preferentially binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. Here, we have investigated binding of a synthetic phosphopeptide of bovine rhodopsin (residues 323-348) to the active variants of visual arrestin-1: splice variant p44, and the mutant R175E. Unlike the wild type arrestin-1, both these arrestins are monomeric in solution. Solution structure analysis using small angle X-ray scattering supported by size exclusion chromatography results reveal dimerization in both the arrestins in the presence of phosphopeptide. Our results are the first report, to our knowledge, on receptor-induced oligomerization in arrestin, suggesting possible roles for the cellular function of arrestin oligomers. Given high structural homology and the similarities in their activation mechanism, these results are expected to have implications for all arrestin isoforms.


Assuntos
Arrestina/química , Arrestina/metabolismo , Multimerização Proteica , Rodopsina/química , Rodopsina/metabolismo , Animais , Bovinos , Cristalografia por Raios X , Fosforilação , Ligação Proteica , Relação Estrutura-Atividade
4.
FEBS J ; 287(3): 496-514, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31330084

RESUMO

Human guanylate-binding protein 1 (hGBP1) belongs to the family of dynamin-like proteins and is activated by addition of nucleotides, leading to protein oligomerization and stimulated GTPase activity. In vivo, hGBP1 is post-translationally modified by attachment of a farnesyl group yielding farn-hGBP1. In this study, hydrodynamic differences in farn-hGBP1 and unmodified hGBP1 were investigated using dynamic light scattering (DLS), analytical ultracentrifugation (AUC) and analytical size-exclusion chromatography (SEC). In addition, we performed small-angle X-ray scattering (SAXS) experiments coupled with a SEC setup (SEC-SAXS) to investigate structural properties of nonmodified hGBP1 and farn-hGBP1 in solution. SEC-SAXS measurements revealed that farnesylation keeps hGBP1 in its inactive monomeric and crystal-like conformation in nucleotide-free solution, whereas unmodified hGBP1 forms a monomer-dimer equilibrium both in the inactive ground state in nucleotide-free solution as well as in the activated state that is trapped by addition of the nonhydrolysable GTP analogue GppNHp. Nonmodified hGBP1 is structurally perturbed as compared to farn-hGBP. In particular, GppNHp binding leads to large structural rearrangements and higher conformational flexibility of the monomer and the dimer. Structural changes observed in the nonmodified protein are prerequisites for further oligomer assemblies of farn-hGBP1 that occur in the presence of nucleotides. DATABASE: All SEC-SAXS data, corresponding fits to the data and structural models are deposited in the Small Angle Scattering Biological Data Bank [SASBDB (Nucleic Acids Res, 43, 2015, D357)] with project IDs: SASDEE8, SASDEF8, SASDEG8, SASDEH8, SASDEJ8, SASDEK8, SASDEL8 and SASDEM8.


Assuntos
Proteínas de Ligação ao GTP/química , Prenilação , Multimerização Proteica , Cromatografia , Difusão Dinâmica da Luz , Proteínas de Ligação ao GTP/metabolismo , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/metabolismo , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
5.
Methods Cell Biol ; 142: 159-172, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28964334

RESUMO

Protein purity and yield are two critical parameters for successful protein characterization using structural techniques such as X-ray crystallography, NMR, and several other biophysical methods. The yeast Saccharomyces cerevisiae is one of the popular eukaryotic model systems for overexpression and subsequent purification of recombinant proteins. Here, we describe a protocol for cloning, overexpression, purification, and crystallization of arrestin-1 and its splice variant p44 from yeast. The purification protocol involves a single-affinity chromatography step on a Strep-Tactin column. Highly purified arrestins can be concentrated up to 15mg/mL using ultrafiltration and can be stored in the frozen state for several months without any loss of functionality.


Assuntos
Arrestina/química , Arrestina/isolamento & purificação , Cromatografia de Afinidade/métodos , Saccharomyces cerevisiae/metabolismo , Arrestina/genética , Cromatografia de Afinidade/instrumentação , Cristalização/métodos , Processamento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Ultrafiltração
6.
Sci Rep ; 5: 15808, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26510463

RESUMO

Binding mechanism of arrestin requires photoactivation and phosphorylation of the receptor protein rhodopsin, where the receptor bound phosphate groups cause displacement of the long C-tail 'activating' arrestin. Mutation of arginine 175 to glutamic acid (R175E), a central residue in the polar core and previously predicted as the 'phosphosensor' leads to a pre-active arrestin that is able to terminate phototransduction by binding to non-phosphorylated, light-activated rhodopsin. Here, we report the first crystal structure of a R175E mutant arrestin at 2.7 Å resolution that reveals significant differences compared to the basal state reported in full-length arrestin structures. These differences comprise disruption of hydrogen bond network in the polar core, and three-element interaction including disordering of several residues in the receptor-binding finger loop and the C-terminus (residues 361-404). Additionally, R175E structure shows a 7.5° rotation of the amino and carboxy-terminal domains relative to each other. Consistent to the biochemical data, our structure suggests an important role of R29 in the initial activation step of C-tail release. Comparison of the crystal structures of basal arrestin and R175E mutant provide insights into the mechanism of arrestin activation, where binding of the receptor likely induces structural changes mimicked as in R175E.


Assuntos
Arrestina/química , Substituição de Aminoácidos , Arginina , Arrestina/genética , Cristalografia por Raios X , Humanos , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
7.
BMC Microbiol ; 15: 30, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25887755

RESUMO

BACKGROUND: Light, oxygen, voltage (LOV) domains are widely distributed in plants, algae, fungi, bacteria, and represent the photo-responsive domains of various blue-light photoreceptor proteins. Their photocycle involves the blue-light triggered adduct formation between the C(4a) atom of a non-covalently bound flavin chromophore and the sulfur atom of a conserved cysteine in the LOV sensor domain. LOV proteins show considerable variation in the structure of N- and C-terminal elements which flank the LOV core domain, as well as in the lifetime of the adduct state. RESULTS: Here, we report the photochemical, structural and functional characterization of DsLOV, a LOV protein from the photoheterotrophic marine α-proteobacterium Dinoroseobacter shibae which exhibits an average adduct state lifetime of 9.6 s at 20°C, and thus represents the fastest reverting bacterial LOV protein reported so far. Mutational analysis in D. shibae revealed a unique role of DsLOV in controlling the induction of photopigment synthesis in the absence of blue-light. The dark state crystal structure of DsLOV determined at 1.5 Å resolution reveals a conserved core domain with an extended N-terminal cap. The dimer interface in the crystal structure forms a unique network of hydrogen bonds involving residues of the N-terminus and the ß-scaffold of the core domain. The structure of photoexcited DsLOV suggests increased flexibility in the N-cap region and a significant shift in the Cα backbone of ß strands in the N- and C-terminal ends of the LOV core domain. CONCLUSIONS: The results presented here cover the characterization of the unusual short LOV protein DsLOV from Dinoroseobacter shibae including its regulatory function, extremely fast dark recovery and an N-terminus mediated dimer interface. Due to its unique photophysical, structural and regulatory properties, DsLOV might thus serve as an alternative model system for studying light perception by LOV proteins and physiological responses in bacteria.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Rhodobacteraceae/química , Organismos Aquáticos/química , Organismos Aquáticos/crescimento & desenvolvimento , Cristalização/métodos , Cristalografia por Raios X , Análise Mutacional de DNA , Modelos Moleculares , Processos Fototróficos , Pigmentos Biológicos/metabolismo , Conformação Proteica , Multimerização Proteica , Rhodobacteraceae/crescimento & desenvolvimento
8.
J Mol Biol ; 416(5): 611-8, 2012 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-22306737

RESUMO

Visual arrestin specifically binds to photoactivated and phosphorylated rhodopsin and inactivates phototransduction. In contrast, the p44 splice variant can terminate phototransduction by binding to nonphosphorylated light-activated rhodopsin. Here we report the crystal structure of bovine p44 at a resolution of 1.85 Å. Compared to native arrestin, the p44 structure reveals significant differences in regions crucial for receptor binding, namely flexible loop V-VI and polar core regions. Additionally, electrostatic potential is remarkably positive on the N-domain and the C-domain. The p44 structure represents an active conformation that serves as a model to explain the 'constitutive activity' found in arrestin variants.


Assuntos
Arrestina/química , Animais , Arrestina/genética , Arrestina/metabolismo , Bovinos , Cristalografia por Raios X/métodos , Variação Genética , Transdução de Sinal Luminoso , Modelos Moleculares , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína/genética , Splicing de RNA , Rodopsina/metabolismo , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...