Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 99: 104931, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38150853

RESUMO

BACKGROUND: SCA27B caused by FGF14 intronic heterozygous GAA expansions with at least 250 repeats accounts for 10-60% of cases with unresolved cerebellar ataxia. We aimed to assess the size and frequency of FGF14 expanded alleles in individuals with cerebellar ataxia as compared with controls and to characterize genetic and clinical variability. METHODS: We sized this repeat in 1876 individuals from France sampled for research purposes in this cross-sectional study: 845 index cases with cerebellar ataxia and 324 affected relatives, 475 controls, as well as 119 cases with spastic paraplegia, and 113 with familial essential tremor. FINDINGS: A higher frequency of expanded allele carriers in index cases with ataxia was significant only above 300 GAA repeats (10.1%, n = 85) compared with controls (1.1%, n = 5) (p < 0.0001) whereas GAA250-299 alleles were detected in 1.7% of both groups. Eight of 14 index cases with GAA250-299 repeats had other causal pathogenic variants (4/14) and/or discordance of co-segregation (5/14), arguing against GAA causality. We compared the clinical signs in 127 GAA≥300 carriers to cases with non-expanded GAA ataxia resulting in defining a key phenotype triad: onset after 45 years, downbeat nystagmus, episodic ataxic features including diplopia; and a frequent absence of dysarthria. All maternally transmitted alleles above 100 GAA were unstable with a median expansion of +18 repeats per generation (r2 = 0.44; p < 0.0001). In comparison, paternally transmitted alleles above 100 GAA mostly decreased in size (-15 GAA (r2 = 0.63; p < 0.0001)), resulting in the transmission bias observed in SCA27B pedigrees. INTERPRETATION: SCA27B diagnosis must consider both the phenotype and GAA expansion size. In carriers of GAA250-299 repeats, the absence of documented familial transmission and a presentation deviating from the key SCA27B phenotype, should prompt the search for an alternative cause. Affected fathers have a reduced risk of having affected children, which has potential implications for genetic counseling. FUNDING: This work was supported by the Fondation pour la Recherche Médicale, grant number 13338 to JLM, the Association Connaître les Syndrome Cérébelleux - France (to GS) and by the European Union's Horizon 2020 research and innovation program under grant agreement No 779257 ("SOLVE-RD" to GS). DP holds a Fellowship award from the Canadian Institutes of Health Research (CIHR). SK received a grant (01GM1905C) from the Federal Ministry of Education and Research, Germany, through the TreatHSP network. This work was supported by the Australian Government National Health and Medical Research Council grants (GNT2001513 and MRFF2007677) to MB and PJL.


Assuntos
Ataxia Cerebelar , Ataxia de Friedreich , Criança , Humanos , Ataxia/diagnóstico , Ataxia/genética , Austrália , Canadá , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/genética , Estudos Transversais , Ataxia de Friedreich/genética
3.
Lancet Neurol ; 22(8): 735-749, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37479376

RESUMO

Dominantly inherited spinocerebellar ataxias (SCAs) are associated with phenotypes that range from pure cerebellar to multisystemic. The list of implicated genes has lengthened in the past 5 years with the inclusion of SCA37/DAB1, SCA45/FAT2, SCA46/PLD3, SCA47/PUM1, SCA48/STUB1, SCA50/NPTX1, SCA25/PNPT1, SCA49/SAM9DL, and SCA27B/FGF14. In some patients, co-occurrence of multiple potentially pathogenic variants can explain variable penetrance or more severe phenotypes. Given this extreme clinical and genetic heterogeneity, genome sequencing should become the diagnostic tool of choice but is still not available in many clinical settings. Treatments tested in phase 2 and phase 3 studies, such as riluzole and transcranial direct current stimulation of the cerebellum and spinal cord, have given conflicting results. To enable early intervention, preataxic carriers of pathogenic variants should be assessed with biomarkers, such as neurofilament light chain and brain MRI; these biomarkers could also be used as outcome measures, given that clinical outcomes are not useful in the preataxic phase. The development of bioassays measuring the concentration of the mutant protein (eg, ataxin-3) might facilitate monitoring of target engagement by gene therapies.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Estimulação Transcraniana por Corrente Contínua , Humanos , Ataxia Cerebelar/genética , Ataxia Cerebelar/terapia , Cerebelo , Ubiquitina-Proteína Ligases , Proteínas de Ligação a RNA , Exorribonucleases , Proteínas Mitocondriais
4.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37301203

RESUMO

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genética
5.
J Med Genet ; 60(7): 717-721, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36599645

RESUMO

Usually, molecular diagnosis of spinocerebellar ataxia is based on a step-by-step approach with targeted sizing of four repeat expansions accounting for most dominant cases, then targeted sequencing of other genes. Nowadays, genome sequencing allows detection of most pathogenic variants in a single step. The ExpansionHunter tool can detect expansions in short-read genome sequencing data. Recent studies have shown that ExpansionHunter can also be used to identify repeat expansions in exome sequencing data. We tested ExpansionHunter on spinocerebellar ataxia exomes in a research context as a second-line analysis, after exclusion of main CAG repeat expansions in half of the probands. First, we confirmed the detection of expansions in seven known expansion carriers and then, after targeted analysis of ATXN1, 2, 3 and 7, CACNA1A, TBP, ATN1, NOP56, AR and HTT in 498 exomes, we found 22 additional pathogenic expansions. Comparison with capillary migration sizing in 247 individuals and confirmation of all expanded alleles detected by ExpansionHunter demonstrated that for these loci, sensitivity and specificity reached 100%. ExpansionHunter detected but underestimated the repeat size for larger expansions, and the normal alleles distribution at each locus should be taken into account to detect expansions. Exome combined with ExpansionHunter is reliable to detect repeat expansions in selected loci as first-line analysis in spinocerebellar ataxia.


Assuntos
Exoma , Ataxias Espinocerebelares , Humanos , Exoma/genética , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Alelos , Heterozigoto
6.
Nat Genet ; 54(12): 1865-1880, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36471070

RESUMO

Canonical (H3.1/H3.2) and noncanonical (H3.3) histone 3 K27M-mutant gliomas have unique spatiotemporal distributions, partner alterations and molecular profiles. The contribution of the cell of origin to these differences has been challenging to uncouple from the oncogenic reprogramming induced by the mutation. Here, we perform an integrated analysis of 116 tumors, including single-cell transcriptome and chromatin accessibility, 3D chromatin architecture and epigenomic profiles, and show that K27M-mutant gliomas faithfully maintain chromatin configuration at developmental genes consistent with anatomically distinct oligodendrocyte precursor cells (OPCs). H3.3K27M thalamic gliomas map to prosomere 2-derived lineages. In turn, H3.1K27M ACVR1-mutant pontine gliomas uniformly mirror early ventral NKX6-1+/SHH-dependent brainstem OPCs, whereas H3.3K27M gliomas frequently resemble dorsal PAX3+/BMP-dependent progenitors. Our data suggest a context-specific vulnerability in H3.1K27M-mutant SHH-dependent ventral OPCs, which rely on acquisition of ACVR1 mutations to drive aberrant BMP signaling required for oncogenesis. The unifying action of K27M mutations is to restrict H3K27me3 at PRC2 landing sites, whereas other epigenetic changes are mainly contingent on the cell of origin chromatin state and cycling rate.


Assuntos
Cromatina , Epigenômica , Linhagem da Célula/genética , Encéfalo
7.
Ann Neurol ; 92(1): 122-137, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35411967

RESUMO

OBJECTIVE: Dominant spinocerebellar ataxias (SCA) are characterized by genetic heterogeneity. Some mapped and named loci remain without a causal gene identified. Here we applied next generation sequencing (NGS) to uncover the genetic etiology of the SCA25 locus. METHODS: Whole-exome and whole-genome sequencing were performed in families linked to SCA25, including the French family in which the SCA25 locus was originally mapped. Whole exome sequence data were interrogated in a cohort of 796 ataxia patients of unknown etiology. RESULTS: The SCA25 phenotype spans a slowly evolving sensory and cerebellar ataxia, in most cases attributed to ganglionopathy. A pathogenic variant causing exon skipping was identified in the gene encoding Polyribonucleotide Nucleotidyltransferase PNPase 1 (PNPT1) located in the SCA25 linkage interval. A second splice variant in PNPT1 was detected in a large Australian family with a dominant ataxia also mapping to SCA25. An additional nonsense variant was detected in an unrelated individual with ataxia. Both nonsense and splice heterozygous variants result in premature stop codons, all located in the S1-domain of PNPase. In addition, an elevated type I interferon response was observed in blood from all affected heterozygous carriers tested. PNPase notably prevents the abnormal accumulation of double-stranded mtRNAs in the mitochondria and leakage into the cytoplasm, associated with triggering a type I interferon response. INTERPRETATION: This study identifies PNPT1 as a new SCA gene, responsible for SCA25, and highlights biological links between alterations of mtRNA trafficking, interferonopathies and ataxia. ANN NEUROL 2022;92:122-137.


Assuntos
Ataxia Cerebelar , Interferon Tipo I , Ataxias Espinocerebelares , Ataxia , Austrália , Exorribonucleases , França , Humanos , Interferon Tipo I/genética , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/patologia
8.
Eur J Hum Genet ; 30(2): 178-186, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34744167

RESUMO

Copy Number Variants (CNVs) are deletions, duplications or insertions larger than 50 base pairs. They account for a large percentage of the normal genome variation and play major roles in human pathology. While array-based approaches have long been used to detect them in clinical practice, whole-genome sequencing (WGS) bears the promise to allow concomitant exploration of CNVs and smaller variants. However, accurately calling CNVs from WGS remains a difficult computational task, for which a consensus is still lacking. In this paper, we explore practical calling options to reach the best compromise between sensitivity and sensibility. We show that callers based on different signal (paired-end reads, split reads, coverage depth) yield complementary results. We suggest approaches combining four selected callers (Manta, Delly, ERDS, CNVnator) and a regenotyping tool (SV2), and show that this is applicable in everyday practice in terms of computation time and further interpretation. We demonstrate the superiority of these approaches over array-based Comparative Genomic Hybridization (aCGH), specifically regarding the lack of resolution in breakpoint definition and the detection of potentially relevant CNVs. Finally, we confirm our results on the NA12878 benchmark genome, as well as one clinically validated sample. In conclusion, we suggest that WGS constitutes a timely and economically valid alternative to the combination of aCGH and whole-exome sequencing.


Assuntos
Variações do Número de Cópias de DNA , Genoma Humano , Hibridização Genômica Comparativa , Humanos , Sequenciamento do Exoma , Sequenciamento Completo do Genoma
9.
Brain ; 145(4): 1519-1534, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34788392

RESUMO

With more than 40 causative genes identified so far, autosomal dominant cerebellar ataxias exhibit a remarkable genetic heterogeneity. Yet, half the patients are lacking a molecular diagnosis. In a large family with nine sampled affected members, we performed exome sequencing combined with whole-genome linkage analysis. We identified a missense variant in NPTX1, NM_002522.3:c.1165G>A: p.G389R, segregating with the phenotype. Further investigations with whole-exome sequencing and an amplicon-based panel identified four additional unrelated families segregating the same variant, for whom a common founder effect could be excluded. A second missense variant, NM_002522.3:c.980A>G: p.E327G, was identified in a fifth familial case. The NPTX1-associated phenotype consists of a late-onset, slowly progressive, cerebellar ataxia, with downbeat nystagmus, cognitive impairment reminiscent of cerebellar cognitive affective syndrome, myoclonic tremor and mild cerebellar vermian atrophy on brain imaging. NPTX1 encodes the neuronal pentraxin 1, a secreted protein with various cellular and synaptic functions. Both variants affect conserved amino acid residues and are extremely rare or absent from public databases. In COS7 cells, overexpression of both neuronal pentraxin 1 variants altered endoplasmic reticulum morphology and induced ATF6-mediated endoplasmic reticulum stress, associated with cytotoxicity. In addition, the p.E327G variant abolished neuronal pentraxin 1 secretion, as well as its capacity to form a high molecular weight complex with the wild-type protein. Co-immunoprecipitation experiments coupled with mass spectrometry analysis demonstrated abnormal interactions of this variant with the cytoskeleton. In agreement with these observations, in silico modelling of the neuronal pentraxin 1 complex evidenced a destabilizing effect for the p.E327G substitution, located at the interface between monomers. On the contrary, the p.G389 residue, located at the protein surface, had no predictable effect on the complex stability. Our results establish NPTX1 as a new causative gene in autosomal dominant cerebellar ataxias. We suggest that variants in NPTX1 can lead to cerebellar ataxia due to endoplasmic reticulum stress, mediated by ATF6, and associated to a destabilization of NP1 polymers in a dominant-negative manner for one of the variants.


Assuntos
Proteína C-Reativa , Ataxia Cerebelar , Estresse do Retículo Endoplasmático , Proteínas do Tecido Nervoso , Humanos , Proteína C-Reativa/genética , Ataxia Cerebelar/genética , Estresse do Retículo Endoplasmático/genética , Sequenciamento do Exoma , Mutação , Proteínas do Tecido Nervoso/genética , Linhagem
10.
Hum Genet ; 140(8): 1229-1239, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34159400

RESUMO

The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified.


Assuntos
Heterogeneidade Genética , Proteínas de Homeodomínio/genética , Deformidades Congênitas dos Membros/genética , Mutação , Fatores de Transcrição/genética , Enzimas Ativadoras de Ubiquitina/genética , Sequência de Bases , Estudos de Coortes , Variações do Número de Cópias de DNA , Expressão Gênica , Testes Genéticos , Humanos , Lactente , Deformidades Congênitas dos Membros/metabolismo , Deformidades Congênitas dos Membros/patologia , Masculino , Linhagem , Fatores de Transcrição/deficiência , Enzimas Ativadoras de Ubiquitina/deficiência , Sequenciamento Completo do Genoma
11.
Neurogenetics ; 22(1): 71-79, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33486633

RESUMO

Spastic ataxias are rare neurogenetic disorders involving spinocerebellar and pyramidal tracts. Many genes are involved. Among them, CAPN1, when mutated, is responsible for a complex inherited form of spastic paraplegia (SPG76). We report the largest published series of 21 novel patients with nine new CAPN1 disease-causing variants and their clinical characteristics from two European university hospitals (Paris and Stockholm). After a formal clinical examination, causative variants were identified by next-generation sequencing and confirmed by Sanger sequencing. CAPN1 variants are a rare cause (~ 1.4%) of young-adult-onset spastic ataxia; however, together with all published cases, they allowed us to better describe the clinical and genetic spectra of this form. Truncating variants are the most frequent, and missense variants lead to earlier age at onset in favor of an additional deleterious effect. Cerebellar ataxia with cerebellar atrophy, dysarthria and lower limb weakness are often associated with spasticity. We also suggest that cognitive impairment and depression should be assessed specifically in the follow-up of SPG76 cases.


Assuntos
Calpaína/genética , Deficiência Intelectual/genética , Espasticidade Muscular/genética , Mutação/genética , Atrofia Óptica/genética , Paraplegia Espástica Hereditária/genética , Ataxias Espinocerebelares/genética , Adulto , Idade de Início , Ataxia Cerebelar/genética , Criança , Feminino , Estudos de Associação Genética , Humanos , Deficiência Intelectual/diagnóstico , Masculino , Espasticidade Muscular/diagnóstico , Atrofia Óptica/diagnóstico , Linhagem , Fenótipo , Ataxias Espinocerebelares/diagnóstico , Adulto Jovem
13.
Cell ; 183(6): 1617-1633.e22, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33259802

RESUMO

Histone H3.3 glycine 34 to arginine/valine (G34R/V) mutations drive deadly gliomas and show exquisite regional and temporal specificity, suggesting a developmental context permissive to their effects. Here we show that 50% of G34R/V tumors (n = 95) bear activating PDGFRA mutations that display strong selection pressure at recurrence. Although considered gliomas, G34R/V tumors actually arise in GSX2/DLX-expressing interneuron progenitors, where G34R/V mutations impair neuronal differentiation. The lineage of origin may facilitate PDGFRA co-option through a chromatin loop connecting PDGFRA to GSX2 regulatory elements, promoting PDGFRA overexpression and mutation. At the single-cell level, G34R/V tumors harbor dual neuronal/astroglial identity and lack oligodendroglial programs, actively repressed by GSX2/DLX-mediated cell fate specification. G34R/V may become dispensable for tumor maintenance, whereas mutant-PDGFRA is potently oncogenic. Collectively, our results open novel research avenues in deadly tumors. G34R/V gliomas are neuronal malignancies where interneuron progenitors are stalled in differentiation by G34R/V mutations and malignant gliogenesis is promoted by co-option of a potentially targetable pathway, PDGFRA signaling.


Assuntos
Neoplasias Encefálicas/genética , Carcinogênese/genética , Glioma/genética , Histonas/genética , Interneurônios/metabolismo , Mutação/genética , Células-Tronco Neurais/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Neoplasias Encefálicas/patologia , Carcinogênese/patologia , Linhagem da Célula , Reprogramação Celular/genética , Cromatina/metabolismo , Embrião de Mamíferos/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glioma/patologia , Histonas/metabolismo , Lisina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Gradação de Tumores , Oligodendroglia/metabolismo , Regiões Promotoras Genéticas/genética , Prosencéfalo/embriologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transcrição Gênica , Transcriptoma/genética
14.
Genet Med ; 22(11): 1851-1862, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32713943

RESUMO

PURPOSE: Pathogenic variants in STUB1 were initially described in autosomal recessive spinocerebellar ataxia type 16 and dominant cerebellar ataxia with cerebellar cognitive dysfunction (SCA48). METHODS: We analyzed a large series of 440 index cerebellar ataxia cases, mostly with dominant inheritance. RESULTS: STUB1 variants were detected in 50 patients. Age at onset and severity were remarkably variable. Cognitive impairment, predominantly frontal syndrome, was observed in 54% of STUB1 variant carriers, including five families with Huntington or frontotemporal dementia disease-like phenotypes associated with ataxia, while no STUB1 variant was found in 115 patients with frontotemporal dementia. We report neuropathological findings of a STUB1 heterozygous patient, showing massive loss of Purkinje cells in the vermis and major loss in the cerebellar hemispheres without atrophy of the pons, hippocampus, or cerebral cortex. This screening of STUB1 variants revealed new features: (1) the majority of patients were women (70%) and (2) "second hits" in AFG3L2, PRKCG, and TBP were detected in three families suggesting synergic effects. CONCLUSION: Our results reveal an unexpectedly frequent (7%) implication of STUB1 among dominantly inherited cerebellar ataxias, and suggest that the penetrance of STUB1 variants could be modulated by other factors, including sex and variants in other ataxia-related genes.


Assuntos
Ataxia Cerebelar , Disfunção Cognitiva , Ataxias Espinocerebelares , Proteases Dependentes de ATP , ATPases Associadas a Diversas Atividades Celulares , Ataxia , Ataxia Cerebelar/genética , Feminino , Humanos , Masculino , Ataxias Espinocerebelares/genética , Ubiquitina-Proteína Ligases
15.
Nat Commun ; 11(1): 3734, 2020 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-32709894

RESUMO

Medullary thymic epithelial cells (mTEC) contribute to the development of T cell tolerance by expressing and presenting tissue-restricted antigens (TRA), so that developing T cells can assess the self-reactivity of their antigen receptors prior to leaving the thymus. mTEC are a heterogeneous population of cells that differentially express TRA. Whether mTEC subsets induce distinct autoreactive T cell fates remains unclear. Here, we establish bacterial artificial chromosome (BAC)-transgenic mouse lines with biased mTEClo or mTEChi expression of model antigens. The transgenic lines support negative selection of antigen-specific thymocytes depending on antigen dose. However, model antigen expression predominantly by mTEClo supports TCRαß+ CD8αα intraepithelial lymphocyte development; meanwhile, mTEChi-restricted expression preferentially induces Treg differentiation of antigen-specific cells in these models to impact control of infectious agents and tumor growth. In summary, our data suggest that mTEC subsets may have a function in directing distinct mechanisms of T cell tolerance.


Assuntos
Antígenos/imunologia , Diferenciação Celular/imunologia , Células Epiteliais/imunologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Antígenos/metabolismo , Infecções Bacterianas , Medula Óssea , Linhagem Celular Tumoral , Feminino , Tolerância Imunológica , Linfonodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Linfócitos T/metabolismo , Timócitos/imunologia , Fatores de Transcrição/genética , Proteína AIRE
16.
Nat Genet ; 51(12): 1702-1713, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31768071

RESUMO

Childhood brain tumors have suspected prenatal origins. To identify vulnerable developmental states, we generated a single-cell transcriptome atlas of >65,000 cells from embryonal pons and forebrain, two major tumor locations. We derived signatures for 191 distinct cell populations and defined the regional cellular diversity and differentiation dynamics. Projection of bulk tumor transcriptomes onto this dataset shows that WNT medulloblastomas match the rhombic lip-derived mossy fiber neuronal lineage and embryonal tumors with multilayered rosettes fully recapitulate a neuronal lineage, while group 2a/b atypical teratoid/rhabdoid tumors may originate outside the neuroectoderm. Importantly, single-cell tumor profiles reveal highly defined cell hierarchies that mirror transcriptional programs of the corresponding normal lineages. Our findings identify impaired differentiation of specific neural progenitors as a common mechanism underlying these pediatric cancers and provide a rational framework for future modeling and therapeutic interventions.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Encéfalo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Animais , Encéfalo/patologia , Linhagem Celular Tumoral , Humanos , Lactente , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Neoplasias Embrionárias de Células Germinativas/genética , Neoplasias Embrionárias de Células Germinativas/patologia , Fibras Nervosas/patologia , Fibras Nervosas/fisiologia , Prosencéfalo/citologia , Prosencéfalo/embriologia , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Análise de Célula Única
17.
Genet Med ; 21(12): 2807-2814, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31164752

RESUMO

PURPOSE: Phenotype information is crucial for the interpretation of genomic variants. So far it has only been accessible for bioinformatics workflows after encoding into clinical terms by expert dysmorphologists. METHODS: Here, we introduce an approach driven by artificial intelligence that uses portrait photographs for the interpretation of clinical exome data. We measured the value added by computer-assisted image analysis to the diagnostic yield on a cohort consisting of 679 individuals with 105 different monogenic disorders. For each case in the cohort we compiled frontal photos, clinical features, and the disease-causing variants, and simulated multiple exomes of different ethnic backgrounds. RESULTS: The additional use of similarity scores from computer-assisted analysis of frontal photos improved the top 1 accuracy rate by more than 20-89% and the top 10 accuracy rate by more than 5-99% for the disease-causing gene. CONCLUSION: Image analysis by deep-learning algorithms can be used to quantify the phenotypic similarity (PP4 criterion of the American College of Medical Genetics and Genomics guidelines) and to advance the performance of bioinformatics pipelines for exome analysis.


Assuntos
Biologia Computacional/métodos , Processamento de Imagem Assistida por Computador/métodos , Análise de Sequência de DNA/métodos , Algoritmos , Bases de Dados Genéticas , Aprendizado Profundo , Exoma/genética , Feminino , Genômica , Humanos , Masculino , Fenótipo , Software
18.
Sci Rep ; 8(1): 14611, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279461

RESUMO

A genome-wide evaluation of the effects of ionizing radiation on mutation induction in the mouse germline has identified multisite de novo mutations (MSDNs) as marker for previous exposure. Here we present the results of a small pilot study of whole genome sequencing in offspring of soldiers who served in radar units on weapon systems that were emitting high-frequency radiation. We found cases of exceptionally high MSDN rates as well as an increased mean in our cohort: While a MSDN mutation is detected in average in 1 out of 5 offspring of unexposed controls, we observed 12 MSDNs in altogether 18 offspring, including a family with 6 MSDNs in 3 offspring. Moreover, we found two translocations, also resulting from neighboring mutations. Our findings indicate that MSDNs might be suited in principle for the assessment of DNA damage from ionizing radiation also in humans. However, as exact person-related dose values in risk groups are usually not available, the interpretation of MSDNs in single families would benefit from larger molecular epidemiologic studies on this new biomarker.


Assuntos
Genoma Humano , Mutação em Linhagem Germinativa , Exposição Paterna , Radiação Ionizante , Adulto , Animais , Sequência de Bases , Estudos de Coortes , Biologia Computacional/métodos , Feminino , Humanos , Recém-Nascido , Masculino , Camundongos , Militares , Taxa de Mutação , Projetos Piloto , Fatores de Risco , Sequenciamento Completo do Genoma
19.
JAMA Neurol ; 75(5): 591-599, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29482223

RESUMO

Importance: Molecular diagnosis is difficult to achieve in disease groups with a highly heterogeneous genetic background, such as cerebellar ataxia (CA). In many patients, candidate gene sequencing or focused resequencing arrays do not allow investigators to reach a genetic conclusion. Objectives: To assess the efficacy of exome-targeted capture sequencing to detect mutations in genes broadly linked to CA in a large cohort of undiagnosed patients and to investigate their prevalence. Design, Setting, and Participants: Three hundred nineteen index patients with CA and without a history of dominant transmission were included in the this cohort study by the Spastic Paraplegia and Ataxia Network. Centralized storage was in the DNA and cell bank of the Brain and Spine Institute, Salpetriere Hospital, Paris, France. Patients were classified into 6 clinical groups, with the largest being those with spastic ataxia (ie, CA with pyramidal signs [n = 100]). Sequencing was performed from January 1, 2014, through December 31, 2016. Detected variants were classified as very probably or definitely causative, possibly causative, or of unknown significance based on genetic evidence and genotype-phenotype considerations. Main Outcomes and Measures: Identification of variants in genes broadly linked to CA, classified in pathogenicity groups. Results: The 319 included patients had equal sex distribution (160 female [50.2%] and 159 male patients [49.8%]; mean [SD] age at onset, 27.9 [18.6] years). The age at onset was younger than 25 years for 131 of 298 patients (44.0%) with complete clinical information. Consanguinity was present in 101 of 298 (33.9%). Very probable or definite diagnoses were achieved for 72 patients (22.6%), with an additional 19 (6.0%) harboring possibly pathogenic variants. The most frequently mutated genes were SPG7 (n = 14), SACS (n = 8), SETX (n = 7), SYNE1 (n = 6), and CACNA1A (n = 6). The highest diagnostic rate was obtained for patients with an autosomal recessive CA with oculomotor apraxia-like phenotype (6 of 17 [35.3%]) or spastic ataxia (35 of 100 [35.0%]) and patients with onset before 25 years of age (41 of 131 [31.3%]). Peculiar phenotypes were reported for patients carrying KCND3 or ERCC5 variants. Conclusions and Relevance: Exome capture followed by targeted analysis allows the molecular diagnosis in patients with highly heterogeneous mendelian disorders, such as CA, without prior assumption of the inheritance mode or causative gene. Being commonly available without specific design need, this procedure allows testing of a broader range of genes, consequently describing less classic phenotype-genotype correlations, and post hoc reanalysis of data as new genes are implicated in the disease.


Assuntos
Ataxia Cerebelar/genética , Sequenciamento do Exoma/métodos , Predisposição Genética para Doença , Mutação/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Adolescente , Adulto , Canais de Cálcio/genética , Estudos de Coortes , Biologia Computacional , Proteínas do Citoesqueleto , DNA Helicases , Feminino , Proteínas de Choque Térmico/genética , Humanos , Masculino , Metaloendopeptidases/genética , Pessoa de Meia-Idade , Enzimas Multifuncionais , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fenótipo , RNA Helicases/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...