Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glia ; 71(3): 648-666, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36565279

RESUMO

Hypoxic preconditioning is protective in multiple models of injury and disease, but whether it is beneficial for cells transplanted into sites of spinal cord injury (SCI) is largely unexplored. In this study, we analyzed whether hypoxia-related preconditioning protected Schwann cells (SCs) transplanted into the contused thoracic rat spinal cord. Hypoxic preconditioning was induced in SCs prior to transplantation by exposure to either low oxygen (1% O2 ) or pharmacological agents (deferoxamine or adaptaquin). All preconditioning approaches induced hypoxic adaptations, including increased expression of HIF-1α and its target genes. These adaptations, however, were transient and resolved within 24 h of transplantation. Pharmacological preconditioning attenuated spinal cord oxidative stress and enhanced transplant vascularization, but it did not improve either transplanted cell survival or recovery of sensory or motor function. Together, these experiments show that hypoxia-related preconditioning is ineffective at augmenting either cell survival or the functional outcomes of SC-SCI transplants. They also reveal that the benefits of hypoxia-related adaptations induced by preconditioning for cell transplant therapies are not universal.


Assuntos
Traumatismos da Medula Espinal , Ratos , Animais , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Hipóxia , Células de Schwann/metabolismo , Transplante de Células , Sobrevivência Celular
2.
Glia ; 69(9): 2215-2234, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34019306

RESUMO

Schwann cell (SC) grafts promote axon regeneration in the injured spinal cord, but transplant efficacy is diminished by a high death rate in the first 2-3 days postimplantation. Both hypoxic preconditioning and pharmacological induction of the cellular hypoxic response can drive cellular adaptations and improve transplant survival in a number of disease/injury models. Hypoxia-inducible factor 1 alpha (HIF-1α), a regulator of the cellular response to hypoxia, is implicated in preconditioning-associated protection. HIF-1α cellular levels are regulated by the HIF-prolyl hydroxylases (HIF-PHDs). Pharmacological inhibition of the HIF-PHDs mimics hypoxic preconditioning and provides a method to induce adaptive hypoxic responses without direct exposure to hypoxia. In this study, we show that hypoxia-mimetics, deferoxamine (DFO) and adaptaquin (AQ), enhance HIF-1α stability and HIF-1α target gene expression. Expression profiling of hypoxia-related genes demonstrates that HIF-dependent and HIF-independent expression changes occur. Analyses of transcription factor binding sites identify several candidate transcriptional co-regulators that vary in SCs along with HIF-1α. Using an in vitro model system, we show that hypoxia-mimetics are potent blockers of oxidative stress-induced death in SCs. In contrast, traditional hypoxic preconditioning was not protective. The robust protection induced by pharmacological preconditioning, particularly with DFO, indicates that pharmacological induction of hypoxic adaptations could be useful for promoting transplanted SC survival. These agents may also be more broadly useful for protecting SCs, as oxidative stress is a major pathway that drives cellular damage in the context of neurological injury and disease, including demyelinating diseases and peripheral neuropathies.


Assuntos
Doenças do Sistema Nervoso Periférico , Animais , Axônios/metabolismo , Morte Celular , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Regeneração Nervosa , Estresse Oxidativo , Doenças do Sistema Nervoso Periférico/metabolismo , Ratos , Células de Schwann/metabolismo
3.
eNeuro ; 4(2)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28451635

RESUMO

Oligodendrocyte progenitor cells (OPCs) are the principal source of new myelin in the central nervous system. A better understanding of how they mature into myelin-forming cells is of high relevance for remyelination. It has recently been demonstrated that during developmental myelination, the DNA methyltransferase 1 (DNMT1), but not DNMT3A, is critical for regulating proliferation and differentiation of OPCs into myelinating oligodendrocytes (OLs). However, it remains to be determined whether DNA methylation is also critical for the differentiation of adult OPCs during remyelination. After lysolecithin-induced demyelination in the ventrolateral spinal cord white matter of adult mice of either sex, we detected increased levels of DNA methylation and higher expression levels of the DNA methyltransferase DNMT3A and lower levels of DNMT1 in differentiating adult OLs. To functionally assess the role of DNMT1 and DNMT3 in adult OPCs, we used mice with inducible and lineage-specific ablation of Dnmt3a and/or Dnmt1 (i.e., Plp-creER(t);Dnmt3a-flox, Plp-creER(t);Dnmt1-flox, Plp-creER(t);Dnmt1-flox;Dnmt3a-flox). Upon lysolecithin injection in the spinal cord of these transgenic mice, we detected defective OPC differentiation and inefficient remyelination in the Dnmt3a null and Dnmt1/Dnmt3a null mice, but not in the Dnmt1 null mice. Taken together with previous results in the developing spinal cord, these data suggest an age-dependent role of distinct DNA methyltransferases in the oligodendrocyte lineage, with a dominant role for DNMT1 in neonatal OPCs and for DNMT3A in adult OPCs.


Assuntos
DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferases/metabolismo , Metilação de DNA , Células Precursoras de Oligodendrócitos/metabolismo , Remielinização , Medula Espinal/metabolismo , Animais , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA (Citosina-5-)-Metiltransferases/genética , DNA Metiltransferase 3A , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/metabolismo , Feminino , Lisofosfatidilcolinas/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Precursoras de Oligodendrócitos/ultraestrutura , Substância Branca/metabolismo
4.
Alcohol Clin Exp Res ; 39(3): 455-62, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25703384

RESUMO

BACKGROUND: Excessive ethanol (EtOH) drinking is associated with white matter loss in the brain at all stages of life. Myelin-forming oligodendrocytes (OLs) are a major component of white matter, but their involvement in EtOH-mediated white matter loss is unclear. Myelination continues throughout the life with highest rates during fetal development and adolescence. However, little is known about the effects of EtOH and its principal metabolite acetaldehyde (ACD) on OLs at the cellular level. METHODS: We compared the responses to different concentrations of EtOH or ACD by primary OLs in culture. RESULTS: EtOH did not cause significant cell death at concentrations lower than 120 mM, even after 24 hours. In comparison, ACD was highly lethal at doses above 50 µM. High concentrations of EtOH (120 mM) and ACD (500 µM) for 24 hours did not reduce myelin in mature OLs. Myelin production and OL differentiation were significantly impaired by 7 days exposure to 500 or 50 µM ACD but not 120 mM EtOH. CONCLUSIONS: This study shows that OLs are relatively resistant to EtOH, even at a concentration more than 4 times the typical blood EtOH concentrations associated with social drinking (10 to 30 mM). In contrast, OLs are much more sensitive to ACD than EtOH, particularly with long-term exposure. This suggests that part of white matter loss in response to EtOH, especially during high rates of myelin formation, may be due in part to the effects of its principal metabolite ACD.


Assuntos
Acetaldeído/toxicidade , Etanol/toxicidade , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia
5.
Cell Transplant ; 22(7): 1249-61, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23031825

RESUMO

Transplanted olfactory ensheathing cells (OECs) contribute to functional recovery in a range of CNS injuries by several mechanisms, one of which is potentially their ability to form myelin sheaths. OECs sourced from donors of different ages have been shown to remyelinate in several in vitro and in vivo models. However, the optimal donor age for OEC associated remyelination is unclear. This project directly compared the remyelinating potential of p75 purified OEC transplants from three donor ages. OECs were sourced from the olfactory bulbs of embryonic, neonatal, and adult rats and purified by immunopanning, and their remyelinating potential was directly compared by transplantation into the same adult rat toxin-induced model of spinal cord demyelination. Remyelination efficiency 3 weeks after transplantation was assessed morphologically and by immunostaining. Our results indicate that all donor ages remyelinate; however, this process is most efficiently achieved by embryonic-derived OECs.


Assuntos
Doenças Desmielinizantes/terapia , Bulbo Olfatório/transplante , Traumatismos da Medula Espinal/cirurgia , Animais , Animais Recém-Nascidos , Células Cultivadas , Doenças Desmielinizantes/metabolismo , Embrião de Mamíferos/citologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imuno-Histoquímica , Bainha de Mielina/fisiologia , Regeneração Nervosa , Bulbo Olfatório/citologia , Ratos , Recuperação de Função Fisiológica , Transplante Homólogo
6.
J Biol Chem ; 284(52): 36047-36054, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19880520

RESUMO

Corticosteroids are potent anti-inflammatory agents, but corticosteroid insensitivity is a major barrier for the treatment of some chronic inflammatory diseases. Here, we show that hypoxia induces corticosteroid-insensitive inflammation via reduced transcription of histone deacetylase-2 (HDAC2) in lung epithelial and macrophage cells. HDAC2 mRNA and protein expression was reduced under hypoxic conditions (1% O(2)). Hypoxia enhanced interleukin-1beta-induced interleukin-8 (CXCL8) production in A549 cells and decreased the ability of dexamethasone to suppress the CXCL8 production. Deletion or point mutation studies revealed that binding of the transcription factor hypoxia-inducible factor (HIF) 1alpha to a HIF response element at position -320, but not HIF-1beta or HIF-2alpha, results in reduced polymerase II binding at the site, leading to reduced promoter activity of HDAC2. Our results suggest that activation of HIF-1alpha by hypoxia decreases HDAC2 levels, resulting in amplified inflammation and corticosteroid resistance.


Assuntos
Dexametasona/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glucocorticoides/farmacologia , Histona Desacetilase 2/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Hipóxia Celular/efeitos dos fármacos , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Histona Desacetilase 2/genética , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-8/biossíntese , Interleucina-8/genética , Macrófagos/metabolismo , Mutação Puntual , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Mucosa Respiratória/metabolismo , Elementos de Resposta/genética , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...