Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 169
Filtrar
1.
J R Soc Interface ; 21(213): 20230656, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593843

RESUMO

Peripheral arterial disease (PAD) and abdominal aortic aneurysms (AAAs) often coexist and pose significant risks of mortality, yet their mutual interactions remain largely unexplored. Here, we introduce a fluid mechanics model designed to simulate the haemodynamic impact of PAD on AAA-associated risk factors. Our focus lies on quantifying the uncertainty inherent in controlling the flow rates within PAD-affected vessels and predicting AAA risk factors derived from wall shear stress. We perform a sensitivity analysis on nine critical model parameters through simulations of three-dimensional blood flow within a comprehensive arterial geometry. Our results show effective control of the flow rates using two-element Windkessel models, although specific outlets need attention. Quantities of interest like endothelial cell activation potential (ECAP) and relative residence time are instructive for identifying high-risk regions, with ECAP showing greater reliability and adaptability. Our analysis reveals that the uncertainty in the quantities of interest is 187% of that of the input parameters. Notably, parameters governing the amplitude and frequency of the inlet velocity exert the strongest influence on the risk factors' variability and warrant precise determination. This study forms the foundation for patient-specific simulations involving PAD and AAAs which should ultimately improve patient outcomes and reduce associated mortality rates.


Assuntos
Aneurisma da Aorta Abdominal , Doença Arterial Periférica , Humanos , Reprodutibilidade dos Testes , Incerteza , Modelos Cardiovasculares , Hemodinâmica , Estresse Mecânico
2.
Sci Rep ; 13(1): 21665, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38066041

RESUMO

On a global scale, cerebro- and cardiovascular diseases have long been one of the leading causes of death and disability and their prevalence appears to be increasing in recent times. Understanding potential biomarkers and risk factors will help to identify individuals potentially at risk of suffering an ischemic stroke. However, the widely variable construction of the cerebral vasculature makes it difficult to provide a specific assessment without the knowledge of a patient's physiology. In this paper we use the 3D blood flow simulator HemeLB to study flow within three common structural variations of the circle of Willis during and in the moments after a blockage of the basilar artery. This tool, based on the lattice Boltzmann method, allows the 3D flow entering the basilar artery to be finely controlled to replicate the cessation of blood feeding this particular vessel-we demonstrate this with several examples including a sudden halt to flow and a gradual loss of flow over three heartbeat cycles. In this work we start with an individualised 3D representation of a full circle of Willis and then construct two further domains by removing the left or right posterior communicating arteries from this geometry. Our results indicate how, and how quickly, the circle of Willis is able to redistribute flow following such a stroke. Due to the choice of infarct, the greatest reduction in flow was observed in the posterior cerebral arteries where flow was reduced by up to 70% in some cases. The high resolution domains used in this study permit the velocity magnitude and wall shear stress to be analysed at key points during and following the stroke. The model we present here indicates how personalised vessels are required to provide the best insight into stroke risk for a given individual.


Assuntos
Círculo Arterial do Cérebro , Acidente Vascular Cerebral , Humanos , Círculo Arterial do Cérebro/fisiologia , Artéria Basilar/fisiologia , Hemodinâmica , Infarto , Circulação Cerebrovascular/fisiologia
3.
J Chem Inf Model ; 63(22): 6959-6963, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37965695

RESUMO

It is increasingly widely recognized that ensemble-based approaches are required to achieve reliability, accuracy, and precision in molecular dynamics calculations. The purpose of the present article is to address a frequently raised question: what is the optimal way to perform ensemble simulation to calculate quantities of interest?


Assuntos
Simulação de Dinâmica Molecular , Reprodutibilidade dos Testes
4.
J Chem Theory Comput ; 19(21): 7846-7860, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37862058

RESUMO

Alchemical relative binding free energy calculations have recently found important applications in drug optimization. A series of congeneric compounds are generated from a preidentified lead compound, and their relative binding affinities to a protein are assessed in order to optimize candidate drugs. While methods based on equilibrium thermodynamics have been extensively studied, an approach based on nonequilibrium methods has recently been reported together with claims of its superiority. However, these claims pay insufficient attention to the basis and reliability of both methods. Here we report a comparative study of the two approaches across a large data set, comprising more than 500 ligand transformations spanning in excess of 300 ligands binding to a set of 14 diverse protein targets. Ensemble methods are essential to quantify the uncertainty in these calculations, not only for the reasons already established in the equilibrium approach but also to ensure that the nonequilibrium calculations reside within their domain of validity. If and only if ensemble methods are applied, we find that the nonequilibrium method can achieve accuracy and precision comparable to those of the equilibrium approach. Compared to the equilibrium method, the nonequilibrium approach can reduce computational costs but introduces higher computational complexity and longer wall clock times. There are, however, cases where the standard length of a nonequilibrium transition is not sufficient, necessitating a complete rerun of the entire set of transitions. This significantly increases the computational cost and proves to be highly inconvenient during large-scale applications. Our findings provide a key set of recommendations that should be adopted for the reliable implementation of nonequilibrium approaches to relative binding free energy calculations in ligand-protein systems.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligantes , Reprodutibilidade dos Testes , Entropia , Proteínas/química , Termodinâmica , Ligação Proteica
5.
Sci Rep ; 13(1): 11410, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452044

RESUMO

Non-periodic solutions are an essential property of chaotic dynamical systems. Simulations with deterministic finite-precision numbers, however, always yield orbits that are eventually periodic. With 64-bit double-precision floating-point numbers such periodic orbits are typically negligible due to very long periods. The emerging trend to accelerate simulations with low-precision numbers, such as 16-bit half-precision floats, raises questions on the fidelity of such simulations of chaotic systems. Here, we revisit the 1-variable logistic map and the generalised Bernoulli map with various number formats and precisions: floats, posits and logarithmic fixed-point. Simulations are improved with higher precision but stochastic rounding prevents periodic orbits even at low precision. For larger systems the performance gain from low-precision simulations is often reinvested in higher resolution or complexity, increasing the number of variables. In the Lorenz 1996 system, the period lengths of orbits increase exponentially with the number of variables. Moreover, invariant measures are better approximated with an increased number of variables than with increased precision. Extrapolating to large simulations of natural systems, such as million-variable climate models, periodic orbit lengths are far beyond reach of present-day computers. Such orbits are therefore not expected to be problematic compared to high-precision simulations but the deviation of both from the continuum solution remains unclear.


Assuntos
Casamento , Dinâmica não Linear
6.
Nat Commun ; 14(1): 3630, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336895

RESUMO

DNA can be folded into rationally designed, unique, and functional materials. To fully realise the potential of these DNA materials, a fundamental understanding of their structure and dynamics is necessary, both in simple solvents as well as more complex and diverse anisotropic environments. Here we analyse an archetypal six-duplex DNA nanoarchitecture with single-particle cryo-electron microscopy and molecular dynamics simulations in solvents of tunable ionic strength and within the anisotropic environment of biological membranes. Outside lipid bilayers, the six-duplex bundle lacks the designed symmetrical barrel-type architecture. Rather, duplexes are arranged in non-hexagonal fashion and are disorted to form a wider, less elongated structure. Insertion into lipid membranes, however, restores the anticipated barrel shape due to lateral duplex compression by the bilayer. The salt concentration has a drastic impact on the stability of the inserted barrel-shaped DNA nanopore given the tunable electrostatic repulsion between the negatively charged duplexes. By synergistically combining experiments and simulations, we increase fundamental understanding into the environment-dependent structural dynamics of a widely used nanoarchitecture. This insight will pave the way for future engineering and biosensing applications.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Microscopia Crioeletrônica , Membrana Celular/química , Bicamadas Lipídicas/química , DNA/química , Solventes
7.
Adv Mater ; 35(35): e2302237, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37376866

RESUMO

Using very large-scale classical molecular dynamics, the mechanics of nano-reinforcement of graphene-based nanocomposites are  examined. Simulations show that significant quantities of large, defect-free, and predominantly flat graphene flakes are required for successful enhancement of materials properties in excellent agreement with experimental and proposed continuum shear-lag theories. The critical lengths for enhancement are approximately 500 nm for graphene and 300 nm and for graphene oxide (GO). The reduction of Young's modulus in GO results in a much smaller enhancement of the composite's Young's modulus. The simulations reveal that the flakes should be aligned and planar for optimal reinforcement. Undulations substantially degrade the enhancement of materials properties.

8.
J Chem Theory Comput ; 19(11): 3359-3378, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37246943

RESUMO

We subject a series of five protein-ligand systems which contain important SARS-CoV-2 targets, 3-chymotrypsin-like protease (3CLPro), papain-like protease, and adenosine ribose phosphatase, to long time scale and adaptive sampling molecular dynamics simulations. By performing ensembles of ten or twelve 10 µs simulations for each system, we accurately and reproducibly determine ligand binding sites, both crystallographically resolved and otherwise, thereby discovering binding sites that can be exploited for drug discovery. We also report robust, ensemble-based observation of conformational changes that occur at the main binding site of 3CLPro due to the presence of another ligand at an allosteric binding site explaining the underlying cascade of events responsible for its inhibitory effect. Using our simulations, we have discovered a novel allosteric mechanism of inhibition for a ligand known to bind only at the substrate binding site. Due to the chaotic nature of molecular dynamics trajectories, regardless of their temporal duration individual trajectories do not allow for accurate or reproducible elucidation of macroscopic expectation values. Unprecedentedly at this time scale, we compare the statistical distribution of protein-ligand contact frequencies for these ten/twelve 10 µs trajectories and find that over 90% of trajectories have significantly different contact frequency distributions. Furthermore, using a direct binding free energy calculation protocol, we determine the ligand binding free energies for each of the identified sites using long time scale simulations. The free energies differ by 0.77 to 7.26 kcal/mol across individual trajectories depending on the binding site and the system. We show that, although this is the standard way such quantities are currently reported at long time scale, individual simulations do not yield reliable free energies. Ensembles of independent trajectories are necessary to overcome the aleatoric uncertainty in order to obtain statistically meaningful and reproducible results. Finally, we compare the application of different free energy methods to these systems and discuss their advantages and disadvantages. Our findings here are generally applicable to all molecular dynamics based applications and not confined to the free energy methods used in this study.


Assuntos
COVID-19 , Simulação de Dinâmica Molecular , Humanos , SARS-CoV-2 , Ligantes , Sítios de Ligação , Proteínas/química , Simulação de Acoplamento Molecular
9.
J Chem Theory Comput ; 19(3): 808-821, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36689668

RESUMO

Quantum chemistry is a promising application for noisy intermediate-scale quantum (NISQ) devices. However, quantum computers have thus far not succeeded in providing solutions to problems of real scientific significance, with algorithmic advances being necessary to fully utilize even the modest NISQ machines available today. We discuss a method of ground state energy estimation predicated on a partitioning of the molecular Hamiltonian into two parts: one that is noncontextual and can be solved classically, supplemented by a contextual component that yields quantum corrections obtained via a Variational Quantum Eigensolver (VQE) routine. This approach has been termed Contextual Subspace VQE (CS-VQE); however, there are obstacles to overcome before it can be deployed on NISQ devices. The problem we address here is that of the ansatz, a parametrized quantum state over which we optimize during VQE; it is not initially clear how a splitting of the Hamiltonian should be reflected in the CS-VQE ansätze. We propose a "noncontextual projection" approach that is illuminated by a reformulation of CS-VQE in the stabilizer formalism. This defines an ansatz restriction from the full electronic structure problem to the contextual subspace and facilitates an implementation of CS-VQE that may be deployed on NISQ devices. We validate the noncontextual projection ansatz using a quantum simulator and demonstrate chemically precise ground state energy calculations for a suite of small molecules at a significant reduction in the required qubit count and circuit depth.

10.
J Chem Inf Model ; 63(3): 718-724, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36719676

RESUMO

Relative binding free energy (RBFE) calculations are widely used to aid the process of drug discovery. TIES, Thermodynamic Integration with Enhanced Sampling, is a dual-topology approach to RBFE calculations with support for NAMD and OpenMM molecular dynamics engines. The software has been thoroughly validated on publicly available datasets. Here we describe the open source software along with a web portal (https://ccs-ties.org) that enables users to perform such calculations correctly and rapidly.


Assuntos
Simulação de Dinâmica Molecular , Software , Termodinâmica , Descoberta de Drogas
11.
Nat Mater ; 22(1): 18-35, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36446962

RESUMO

Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.


Assuntos
Materiais Biomiméticos , Nanocompostos , Materiais Biomiméticos/química , Nanocompostos/química , Água/química
12.
ACS Appl Nano Mater ; 5(12): 17969-17976, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36583124

RESUMO

Advanced nanoelectromechanical systems made from polymer dielectrics deposited onto 2D-nanomaterials such as graphene are increasingly popular as pressure and touch sensors, resonant sensors, and capacitive micromachined ultrasound transducers (CMUTs). However, durability and accuracy of layered nanocomposites depend on the mechanical stability of the interface between polymer and graphene layers. Here we used molecular dynamics computer simulations to investigate the interface between a sheet of graphene and a layer of parylene-C thermoplastic polymer during large numbers of high-frequency (MHz) cycles of bending relevant to the operating regime. We find that important interfacial sliding occurs almost immediately in usage conditions, resulting in more than 2% expansion of the membrane, a detrimental mechanism which requires repeated calibration to maintain CMUTs accuracy. This irreversible mechanism is caused by relaxation of residual internal stresses in the nanocomposite bilayer, leading to the emergence of self-equilibrated tension in the polymer and compression in the graphene. It arises as a result of deposition-polymerization processing conditions. Our findings demonstrate the need for particular care to be exercised in overcoming initial expansion. The selection of appropriate materials chemistry including low electrostatic interactions will also be key to their successful application as durable and reliable devices.

13.
Sci Rep ; 12(1): 19092, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36351976

RESUMO

Substantial effort is being invested in the creation of a virtual human-a model which will improve our understanding of human physiology and diseases and assist clinicians in the design of personalised medical treatments. A central challenge of achieving blood flow simulations at full-human scale is the development of an efficient and accurate approach to imposing boundary conditions on many outlets. A previous study proposed an efficient method for implementing the two-element Windkessel model to control the flow rate ratios at outlets. Here we clarify the general role of the resistance and capacitance in this approach and conduct a parametric sweep to examine how to choose their values for complex geometries. We show that the error of the flow rate ratios decreases exponentially as the resistance increases. The errors fall below 4% in a simple five-outlets model and 7% in a human artery model comprising ten outlets. Moreover, the flow rate ratios converge faster and suffer from weaker fluctuations as the capacitance decreases. Our findings also establish constraints on the parameters controlling the numerical stability of the simulations. The findings from this work are directly applicable to larger and more complex vascular domains encountered at full-human scale.


Assuntos
Artérias , Modelos Cardiovasculares , Humanos , Velocidade do Fluxo Sanguíneo/fisiologia , Artérias/fisiologia , Hemodinâmica/fisiologia
14.
Sci Rep ; 12(1): 10433, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729177

RESUMO

Optimization of binding affinities for compounds to their target protein is a primary objective in drug discovery. Herein we report on a collaborative study that evaluates a set of compounds binding to ROS1 kinase. We use ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and TIES (thermodynamic integration with enhanced sampling) protocols to rank the binding free energies. The predicted binding free energies from ESMACS simulations show good correlations with experimental data for subsets of the compounds. Consistent binding free energy differences are generated for TIES and ESMACS. Although an unexplained overestimation exists, we obtain excellent statistical rankings across the set of compounds from the TIES protocol, with a Pearson correlation coefficient of 0.90 between calculated and experimental activities.


Assuntos
Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Simulação de Dinâmica Molecular , Ligação Proteica , Termodinâmica
15.
J Chem Inf Model ; 62(10): 2561-2570, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35508076

RESUMO

Optimization of binding affinities for ligands to their target protein is a primary objective in rational drug discovery. Herein, we report on a collaborative study that evaluates various compounds designed to bind to the SET and MYND domain-containing protein 3 (SMYD3). SMYD3 is a histone methyltransferase and plays an important role in transcriptional regulation in cell proliferation, cell cycle, and human carcinogenesis. Experimental measurements using the scintillation proximity assay show that the distributions of binding free energies from a large number of independent measurements exhibit non-normal properties. We use ESMACS (enhanced sampling of molecular dynamics with approximation of continuum solvent) and TIES (thermodynamic integration with enhanced sampling) protocols to predict the binding free energies and to provide a detailed chemical insight into the nature of ligand-protein binding. Our results show that the 1-trajectory ESMACS protocol works well for the set of ligands studied here. Although one unexplained outlier exists, we obtain excellent statistical ranking across the set of compounds from the ESMACS protocol and good agreement between calculations and experiments for the relative binding free energies from the TIES protocol. ESMACS and TIES are again found to be powerful protocols for the accurate comparison of the binding free energies.


Assuntos
Amidas , Isoxazóis , Amidas/farmacologia , Histona-Lisina N-Metiltransferase/química , Humanos , Ligantes , Ligação Proteica , Proteínas/metabolismo , Termodinâmica
16.
J Chem Theory Comput ; 18(6): 3972-3987, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35609233

RESUMO

The binding free energy between a ligand and its target protein is an essential quantity to know at all stages of the drug discovery pipeline. Assessing this value computationally can offer insight into where efforts should be focused in the pursuit of effective therapeutics to treat a myriad of diseases. In this work, we examine the computation of alchemical relative binding free energies with an eye for assessing reproducibility across popular molecular dynamics packages and free energy estimators. The focus of this work is on 54 ligand transformations from a diverse set of protein targets: MCL1, PTP1B, TYK2, CDK2, and thrombin. These targets are studied with three popular molecular dynamics packages: OpenMM, NAMD2, and NAMD3 alpha. Trajectories collected with these packages are used to compare relative binding free energies calculated with thermodynamic integration and free energy perturbation methods. The resulting binding free energies show good agreement between molecular dynamics packages with an average mean unsigned error between them of 0.50 kcal/mol. The correlation between packages is very good, with the lowest Spearman's, Pearson's and Kendall's tau correlation coefficients being 0.92, 0.91, and 0.76, respectively. Agreement between thermodynamic integration and free energy perturbation is shown to be very good when using ensemble averaging.


Assuntos
Simulação de Dinâmica Molecular , Entropia , Ligantes , Ligação Proteica , Reprodutibilidade dos Testes , Termodinâmica
17.
J Chem Theory Comput ; 18(4): 2687-2702, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35293737

RESUMO

The accurate and reliable prediction of protein-ligand binding affinities can play a central role in the drug discovery process as well as in personalized medicine. Of considerable importance during lead optimization are the alchemical free energy methods that furnish an estimation of relative binding free energies (RBFE) of similar molecules. Recent advances in these methods have increased their speed, accuracy, and precision. This is evident from the increasing number of retrospective as well as prospective studies employing them. However, such methods still have limited applicability in real-world scenarios due to a number of important yet unresolved issues. Here, we report the findings from a large data set comprising over 500 ligand transformations spanning over 300 ligands binding to a diverse set of 14 different protein targets which furnish statistically robust results on the accuracy, precision, and reproducibility of RBFE calculations. We use ensemble-based methods which are the only way to provide reliable uncertainty quantification given that the underlying molecular dynamics is chaotic. These are implemented using TIES (Thermodynamic Integration with Enhanced Sampling). Results achieve chemical accuracy in all cases. Ensemble simulations also furnish information on the statistical distributions of the free energy calculations which exhibit non-normal behavior. We find that the "enhanced sampling" method known as replica exchange with solute tempering degrades RBFE predictions. We also report definitively on numerous associated alchemical factors including the choice of ligand charge method, flexibility in ligand structure, and the size of the alchemical region including the number of atoms involved in transforming one ligand into another. Our findings provide a key set of recommendations that should be adopted for the reliable application of RBFE methods.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligantes , Estudos Prospectivos , Ligação Proteica , Proteínas/química , Reprodutibilidade dos Testes , Estudos Retrospectivos , Termodinâmica
18.
Mol Syst Des Eng ; 7(2): 123-131, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35223088

RESUMO

Although researchers have been working tirelessly since the COVID-19 outbreak, so far only three drugs - remdesivir, ronapreve and molnupiravir - have been approved for use in some countries which directly target the SARS-CoV-2 virus. Given the slow pace and substantial costs of new drug discovery and development, together with the urgency of the matter, repurposing of existing drugs for the ongoing disease is an attractive proposition. In a recent study, a high-throughput X-ray crystallographic screen was performed for a selection of drugs which have been approved or are in clinical trials. Thirty-seven compounds have been identified from drug libraries all of which bind to the SARS-CoV-2 main protease (3CLpro). In the current study, we use molecular dynamics simulation and an ensemble-based free energy approach, namely, enhanced sampling of molecular dynamics with approximation of continuum solvent (ESMACS), to investigate a subset of the aforementioned compounds. The drugs studied here are highly diverse, interacting with different binding sites and/or subsites of 3CLpro. The predicted free energies are compared with experimental results wherever they are available and they are found to be in excellent agreement. Our study also provides detailed energetic insights into the nature of the associated drug-protein binding, in turn shedding light on the design and discovery of potential drugs.

19.
Interface Focus ; 11(6): 20210018, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34956592

RESUMO

The race to meet the challenges of the global pandemic has served as a reminder that the existing drug discovery process is expensive, inefficient and slow. There is a major bottleneck screening the vast number of potential small molecules to shortlist lead compounds for antiviral drug development. New opportunities to accelerate drug discovery lie at the interface between machine learning methods, in this case, developed for linear accelerators, and physics-based methods. The two in silico methods, each have their own advantages and limitations which, interestingly, complement each other. Here, we present an innovative infrastructural development that combines both approaches to accelerate drug discovery. The scale of the potential resulting workflow is such that it is dependent on supercomputing to achieve extremely high throughput. We have demonstrated the viability of this workflow for the study of inhibitors for four COVID-19 target proteins and our ability to perform the required large-scale calculations to identify lead antiviral compounds through repurposing on a variety of supercomputers.

20.
Sci Rep ; 11(1): 22460, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789770

RESUMO

Controlling the structure of graphene oxide (GO) phases and their smaller analogues, graphene (oxide) quantum dots (GOQDs), is vitally important for any of their widespread intended applications: highly ordered arrangements of nanoparticles for thin-film or membrane applications of GO, dispersed nanoparticles for composite materials and three-dimensional porous arrangements for hydrogels. In aqueous environments, it is not only the chemical composition of the GO flakes that determines their morphologies; external factors such as pH and the coexisting cations also influence the structures formed. By using accurate models of GO that capture the heterogeneity of surface oxidation and very large-scale coarse-grained molecular dynamics that can simulate the behaviour of GO at realistic sizes of GOQDs, the driving forces that lead to the various morphologies in aqueous solution are resolved. We find the morphologies are determined by a complex interplay between electrostatic, [Formula: see text]-[Formula: see text] and hydrogen bonding interactions. Assembled morphologies can be controlled by changing the degree of oxidation and the pH. In acidic aqueous solution, the GO flakes vary from fully aggregated over graphitic domains to partial aggregation via hydrogen bonding between hydroxylated domains, leading to the formation of planar extended flakes at high oxidation ratios and stacks at low oxidation ratios. At high pH, where the edge carboxylic acid groups are deprotonated, electrostatic repulsion leads to more dispersion, but a variety of aggregation behaviour is surprisingly still observed: over graphitic regions, via hydrogen bonding and "face-edge" interactions. Calcium ions cause additional aggregation, with a greater number of "face-face" and "edge-edge" aggregation mechanisms, leading to irregular aggregated structures. "Face-face" aggregation mechanisms are enhanced by the GO flakes possessing distinct domains of hydroxylated and graphitic regions, with [Formula: see text]-[Formula: see text] and hydrogen bonding interactions prevalent between these regions on aggregated flakes respectively. These findings furnish explanations for the aggregation characteristics of GO and GOQDs, and provide computational methods to design directed synthesis routes for self-assembled and associated applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...