Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 905: 167095, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37748607

RESUMO

Ongoing and future climate change driven expansion of aeroallergen-producing plant species comprise a major human health problem across Europe and elsewhere. There is an urgent need to produce accurate, temporally dynamic maps at the continental level, especially in the context of climate uncertainty. This study aimed to restore missing daily ragweed pollen data sets for Europe, to produce phenological maps of ragweed pollen, resulting in the most complete and detailed high-resolution ragweed pollen concentration maps to date. To achieve this, we have developed two statistical procedures, a Gaussian method (GM) and deep learning (DL) for restoring missing daily ragweed pollen data sets, based on the plant's reproductive and growth (phenological, pollen production and frost-related) characteristics. DL model performances were consistently better for estimating seasonal pollen integrals than those of the GM approach. These are the first published modelled maps using altitude correction and flowering phenology to recover missing pollen information. We created a web page (http://euragweedpollen.gmf.u-szeged.hu/), including daily ragweed pollen concentration data sets of the stations examined and their restored daily data, allowing one to upload newly measured or recovered daily data. Generation of these maps provides a means to track pollen impacts in the context of climatic shifts, identify geographical regions with high pollen exposure, determine areas of future vulnerability, apply spatially-explicit mitigation measures and prioritize management interventions.


Assuntos
Alérgenos , Ambrosia , Humanos , Europa (Continente) , Pólen
2.
Brain Sci ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34942856

RESUMO

The high level of heterogeneity in Autism Spectrum Disorder (ASD) and the lack of systematic measurements complicate predicting outcomes of early intervention and the identification of better-tailored treatment programs. Computational phenotyping may assist therapists in monitoring child behavior through quantitative measures and personalizing the intervention based on individual characteristics; still, real-world behavioral analysis is an ongoing challenge. For this purpose, we designed EYE-C, a system based on OpenPose and Gaze360 for fine-grained analysis of eye-contact episodes in unconstrained therapist-child interactions via a single video camera. The model was validated on video data varying in resolution and setting, achieving promising performance. We further tested EYE-C on a clinical sample of 62 preschoolers with ASD for spectrum stratification based on eye-contact features and age. By unsupervised clustering, three distinct sub-groups were identified, differentiated by eye-contact dynamics and a specific clinical phenotype. Overall, this study highlights the potential of Artificial Intelligence in categorizing atypical behavior and providing translational solutions that might assist clinical practice.

3.
Sci Data ; 7(1): 234, 2020 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-32661247

RESUMO

We introduce TAASRAD19, a high-resolution radar reflectivity dataset collected by the Civil Protection weather radar of the Trentino South Tyrol Region, in the Italian Alps. The dataset includes 894,916 timesteps of precipitation from more than 9 years of data, offering a novel resource to develop and benchmark analog ensemble models and machine learning solutions for precipitation nowcasting. Data are expressed as 2D images, considering the maximum reflectivity on the vertical section at 5 min sampling rate, covering an area of 240 km of diameter at 500 m horizontal resolution. The TAASRAD19 distribution also includes a curated set of 1,732 sequences, for a total of 362,233 radar images, labeled with precipitation type tags assigned by expert meteorologists. We validate TAASRAD19 as a benchmark for nowcasting methods by introducing a TrajGRU deep learning model to forecast reflectivity, and a procedure based on the UMAP dimensionality reduction algorithm for interactive exploration. Software methods for data pre-processing, model training and inference, and a pre-trained model are publicly available on GitHub ( https://github.com/MPBA/TAASRAD19 ) for study replication and reproducibility.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...